Department of Second Year Engineering Course Outcomes [CO'S] CLASS: SECOND YEAR (IT) [2019 COURSE]

Cour	se Outcome
Sr. No	Name of Subject
1	214441: Discrete Mathematics
	CO1: Formulate and apply formal proof techniques and solve the problems with logical reasoning.
	CO2: Analyze and evaluate the combinatorial problems by using probability theory.
	CO3: Apply the concepts of graph theory to devise mathematical models.
	CO4: Analyze types of relations and functions to provide solution to computational problems.
	CO5: Identify techniques of number theory and its application. CO6: Identify fundamental algebraic structures.
2	214442:Logic Design & Computer Organization
	CO1: Perform basic binary arithmetic & simplify logic expressions.
	CO2: Grasp the operations of logic ICs and Implement combinational logic functions using ICs.
	CO3: Comprehend the operations of basic memory cell types and Implement sequential logic
	functions using ICs.
	CO4: Elucidate the functions & organization of various blocks of CPU.
	CO5: Understand CPU instruction characteristics, enhancement features of CPU.
	CO6: Describe an assortment of memory types (with their characteristics) used in computersystems andbasic principle of interfacing input, output devices.
3	214443:Data Structure & Algorithms
	CO1: Perform basic analysis of algorithms with respect to time and space complexity.
	CO2: Select appropriate searching and/or sorting techniques in the application development.
	CO3: Implement abstract data type (ADT) and data structures for given application.
	CO4: Design algorithms based on techniques like brute -force, divide and conquer, greedy, etc.
	CO5: Apply implement learned algorithm design techniques and data structures to solveproblems.
	CO6: Design different hashing functions and use files organizations.
4	214448: Object Oriented Programming Lab

M.

	CO1: Differentiate various programming paradigms.
	CO2: Identify classes, objects, methods, and handle object creation, initialization, and Destruction
	to model real-world problems.
	CO3: Identify relationship among objects using inheritance and polymorphism principles.
	CO4: Handle different types of exceptions and perform generic programming.
	CO5: Use of files for persistent data storage for real world application.
	CO6: Apply appropriate design patterns to provide object-oriented solutions.
5	214445: Basics of Computer Network
	CO1: Understand and explain the concepts of communication theory and compare functions of OSI and TCP/IP model.
	CO2: Analyze data link layer services, error detection and correction, linear block codes, cyclicCodes, framing and flow control protocols.
	CO3: Compare different access techniques, channelization and IEEE standards.
	CO4: Apply the skills of subnetting, supernetting and routing mechanisms.
	CO5: Differentiate IPv4 and IPv6.
	CO6: Illustrate services and protocols used at transport layer.
6	207003: Engineering Mathematics III
	CO1: Solve Linear_differential equations, essential in modelling and design of computer-based systems.
	CO2: Apply concept of Fourier transform and Z-transform and its applications to continuous and discrete systems and image processing.
	CO3: Apply Statistical methods like correlation& regression analysis and probability theory fordata analysis and predictions in machine learning.
	CO4: Solve Algebraic &Transcendental equations and System of linear equations using numerical techniques.
	CO5: Obtain Interpolating polynomials, numerical differentiation and integration, numerical
	Solutions of ordinary differential equations used in modern scientific computing.
7	214451: Processor Architecture
	CO1: Apprehend architecture and memory organization of PIC 18 microcontroller.
	CO2: Implement embedded C programming for PIC 18.

2	314442: Operating Systems
	CO1: Explain the role of Modern Operating Systems.
	CO2: Apply the concepts of process and thread scheduling.
	CO3: Illustrate the concept of process synchronization, mutual exclusion and thedeadlock.
	CO4: Implement the concepts of various memory management techniques.
	CO5: Make use of concept of I/O management and File system. CO6: Understand Importance of System software.
3	314443: Machine Learning
	CO1: Apply basic concepts of machine learning and different types of machine learning algorithms.
	CO2: Differentiate various regression techniques and evaluate their performance.
	CO3: Compare different types of classification models and their relevant application.
	CO4: Illustrate the tree-based and probabilistic machine learning algorithms.
	CO5: Identify different unsupervised learning algorithms for the related real-world problems. CO6: Apply fundamental concepts of ANN.
4	314444: Human Computer Interaction
	CO1: Explain importance of HCI study and principles of user-centered design (UCD) approach.
	CO2: Develop understanding of human factors in HCI design.
	CO3: Develop understanding of models, paradigms, and context of interactions.
	CO4: Design effective user-interfaces following a structured and organized UCD process.
	CO5: Evaluate usability of a user-interface design.
	CO6: Apply cognitive models for predicting human-computer-interactions.
5	314445(B): Elective -I: Advanced Database Management System
	CO1: Differentiate relational and object-oriented
	databases.CO2: Illustrateparallel & distributed database
	architectures.
	CO3: Apply concepts of NoSQL Databases.
	CO4: Explainconceptsofdata warehouse and OLAP technologies.
	CO5: Apply data mining algorithms and various software tools.
	CO6: Comprehend emerging and enhanced data models for
	advanced applications.
6	314451: Computer Network and Security

-	
	CO3: Use concepts of timers and interrupts of PIC 18.
	CO4: Demonstrate real life applications using PIC 18.
	CO5: Analyze architectural details of ARM processor.
8	214452: Database Management System
	CO1: Apply fundamental elements of database management systems.
	CO2: Design ER-models to represent simple database application scenarios.
	CO3: Formulate SQL queries on data for relational databases.
	CO4: Improve the database design by normalization & to incorporate query processing.
	CO5: Apply ACID properties for transaction management and concurrency control.
	CO6: Analyze various database architectures and technologies
9	214453: Computer Graphics
	CO1: Apply mathematical and logical aspects for developing elementary graphics operationslike
	scan conversion of points, lines, circle, and apply it for problem solving.
	CO2: Employ techniques of geometrical transforms to produce, position and manipulateObjects in
	2 dimensional and 3-dimensional space respectively.
	CO3: Describe mapping from a world coordinates to device coordinates, clipping, and projections in
	order to produce 3D images on 2D output device.
	CO4: Apply concepts of rendering, shading, animation, curves and fractals using computergraphics
	tools in design, development and testing of 2D, 3D modeling applications.
	CO5: Perceive the concepts of virtual reality.
10	214454: Software Engineering
	CO1: Classify various software application domains.
	CO2: Analyze software requirements by using various modeling techniques.
	CO3: Translate the requirement models into design models.
	CO4: Apply planning and estimation to any project.
	CO5: Use quality attributes and testing principles in software development life cycle.
	CO6: Discuss recent trends in Software engineering by using CASE and agile tools.

Third Year Information Technology

Cour	se Outcome
Sr. No	Name of Subject
1	314441: Theory of Computation
	CO1: Construct finite automata and its variants to solve computing problems.
	CO2: Write regular expressions for the regular languages and finite automata.
	CO3: Identify types of grammar, design and simplify Context Free Grammar.
	CO4: Construct Pushdown Automata machine for the Context Free Language.
	CO5: Design and analyze Turing machines for formal languages.
r	CO6: Understand decidable and undecidable problement and experience complexity classes.

