Department of Second Year Engineering

Course Outcomes [CO'S]

CLASS: SECOND YEAR (COMPUTER) [2019 COURSE]

Cours	Course Outcome		
Sr.No	Name of Subject		
1	210241: Discrete Mathematics		
	CO1: Design and analyze real world engineering problems by applying set theory, propositional logic and mathematical induction		
	CO2: Develop skill in expressing mathematical properties of relation and function CO3: Identify number of logical possibilities of events to design professional engineering Solutions		
	CO4: Model and solve computing problem using tree and graph Analyze the properties of binary operations and evaluate the algebraic structure		
Ŧ	CO5: Apply abstract algebra in combinatorics, coding theory and questions regarding geometric constructions		
2	210242: Fundamentals of Data Structures		
	CO1: To demonstrate a detailed understanding of behavior of data structures like array, linked list, stack, and queue by developing programs.		
	CO2: To use appropriate algorithmic strategy for better efficiency		
	CO3: To summarize data searching and sorting techniques.		
	CO4: To discriminate the usage of various structures in approaching the problem solution. CO5: To analyze and use effective and efficient data structures in solving various		
	Computer Engineering domain problems.		
	CO6: To design the algorithms to solve the programming problems.		
3	210243: Object Oriented Programming		
	CO1: Analyze the strengths of object oriented programming		
	CO2: Design and apply OOP principles for effective programming		
	CO3: Develop the application using object oriented programming language(C++)		
4	CO4: Apply object-oriented concepts for advanced programming.		
4	210244: Computer Graphics		
	CO1: Define basic terminologies of Computer Graphics, interpret the mathematical		
	foundation of the concepts of computer graphics and apply mathematics to develop		
	Computer programs for elementary graphic operations.		
	CO2: Define the concept of windowing and clipping and apply various algorithms to fill		
	and clip polygons.		
	CO3: Explain the core concepts of computer graphics, including transformation in two and three dimensions, viewing and projection.		

CO4: Explain the concepts of color models, lighting, shading models and h	
CO4. Explain the concepts of color models, lighting, shading models and h	idden surface
elimination.	
CO5: Describe the fundamentals of curves, fractals, animation and gaming.	
5 210245: Digital Electronics and Logic Design	
CO1: Simplify Boolean Expressions using K Map.	
CO2: Design and implement combinational circuits.	
CO3: Design and implement sequential circuits.	
CO4: Develop simple real-world application using ASM and PLD.	
CO5: Choose appropriate logic families IC packages as per the s	given design
specifications.	
CO6: Explain organization and architecture of computer system	
6 210246: Humanity & Social Science	
CO1: Aware of the various issues concerning humans and society.	
CO2: Aware about their responsibilities towards society.	
CO3: Sensitized about broader issues regarding the social, cultural, economic	ic and human
aspects, involved in social changes.	
CO4: Able to understand the nature of the individual and the relationship	between self
and the community.	
CO5: Able to understand major ideas, values, beliefs, and experiences that	have shaped
human history and cultures.	
7 210252: Mathematics III	
CO1: Solve Linear differential equations, Essential in modeling and design	of computer-
based System.	
CO2: Apply concept of Fourier transform and Z-transform and its a	pplication to
continuous and discrete system and image processing.	
CO3: Apply statistical methods like correlation and regression analysis and	d probability
theory for Data analysis and predictions in machine learning.	
CO4: Solve Algebraic and Transcendental equations and system of linear equations	uations using
numerical techniques	
CO5: Obtain interpolating polynomials, numerical differentiation and	
numerical solutions of ordinary differential equations used in mode	ern scientific
computing.	
8 210253: Data Structures & Algorithms	
CO1: To identify & articulate the complexity goals and benefits of a g	good hashing
scheme for real- world applications.	2*
CO2: To apply non-linear data structures for solving problems of various don	
CO3: To design and specify the operations of a nonlinear-based abstract d	lata type and
implement them in a high-level programming language.	
CO4: To analyze the algorithmic solutions for resource requirements and opti	
CO5: To use efficient indexing methods and multiway search techniques	to store and

	maintain data.
4	CO6: To use appropriate modern tools to understand and analyze the functionalities
	confined to the secondary storage.
0	
9	210254: Software Engineering
	CO1: Apply software engineering principles to develop software.
	CO2: Analyze software requirements and formulate design solution for a software. CO3:
	Explain concepts of project estimation, planning and scheduling.
	CO4: Explain risk management and software configuration management.
	CO5: Explain various types of software testing.
10	210255: Microprocessor
	CO1: To apply the assembly language programming to develop small real life embedded
	application.
	CO2: To understand the architecture of the advanced processor thoroughly to use the
	resources for programming
	CO3: To understand the higher processor architectures descended from 80386
	architecture
11	
11	210256: Principles of Programming Languages
	CO1: Make use of basic principles of programming languages
	CO2: Able to develop a program with Data representation and Computations
	CO3: Able to develop programs using Object Oriented Programming language: Java
	CO4: Develop application using inheritance, encapsulation, and polymorphism
	CO5: Able to demonstrate Applet and Multithreading for robust application development
	CO6: Able to develop a simple program using basic concepts of Functional and Logical
	programming paradigm
	programming paradigm

Third Year Computer Engineering

Cou	Course Outcome		
Sr.	Name of Subject		
No			
1	310241: Database Management Systems		
	CO1: Analyze and design Database Management System using ER model		
	CO2: Implement database queries using database languages		
	CO3: Normalize the database design using normal forms		
	CO4: Apply Transaction Management concepts in real-time situations		
	CO5: Use NoSQL databases for processing unstructured data		
	CO6: Differentiate between Complex Data Types and analyze the use of appropriate data		
	types		
2	310242: Theory of Computation		

