

Savitribai Phule Pune University Board of Studies - Automobile and Mechanical Engineering Undergraduate Program - Mechanical Engineering (2019 pattern)

Course		Course Name	Te So (Hr	ach chei s./w	ing ne eek)	Еу	kam a	inati Ind N	on S Aarl	Sche ks	eme		Credit		
Code		Course manie	ΗT	BR	TUT	ISE	ESE	ΤW	PR	OR	Total	TH	PR	TUT	Total
		Semest	ter-`	V											
<u>302041</u>	Nume	erical & Statistical Methods	3	-	1	30	70	25	-	-	125	3	-	1	4
302042	Heat	& Mass Transfer	3	2	-	30	70	-	50	-	150	3	1	-	4
<u>302043</u>	Design of Machine Elements		3	2	-	30	70	-	-	25	125	3	1	-	4
<u>302044</u>	Mechatronics		3	2	-	30	70	-	-	25	125	3	1	-	4
<u>302045</u>	Elective I		3	-	-	30	70	-	-	-	100	3	-	-	3
<u>302046</u>	Digital Manufacturing Laboratory		-	2	-	-	-	50	-	-	50	-	1	-	1
<u>302047</u>	Skill Development		-	2	-	-	-	25	-	-	25	-	1	-	1
<u>302048</u>	Audit course - $V^{\$}$		-	-	-	-	-	-	-	-	-	-	-	-	-
	Total			10	1	150	350	100	50	50	700	15	5	1	21
		Semest	er-V	/Ι	•				r	r				r	
<u>302049</u>	Artific	cial Intelligence & Machine Learning	3	2	-	30	70	-	-	25	125	3	1	-	4
<u>302050</u>	Comp	outer Aided Engineering	3	2	-	30	70	-	50	-	150	3	1	-	4
302051	Desig	n of Transmission Systems	3	2	-	30	70	-	-	25	125	3	1	-	4
<u>302052</u>	Electi	ive II	3	-	-	30	70	-	-	-	100	3	-	-	3
<u>302053</u>	Meas	urement Laboratory	-	2	-	-	-	50	-	-	50	-	1	-	1
<u>302054</u>	54 Fluid Power &Control Laboratory		-	2	-	-	-	50	-	-	50	-	1	-	1
<u>302055</u>	055 Internship/Mini project *		-	4	-	-	-	100	-	-	100	-	4	-	4
<u>302056</u>	6 Audit course - VI ^{\$}		-	-	-	-	-	-	-	-	-	-	-	-	-
Total				14	-	120	280	200	50	50	700	12	9	-	21
		Elective-I		Elective-II											
<u>302045</u>	5- <u>A</u>	Advanced Forming & Joining Proces	ses	30)205	2-A	. (Comp	posit	e M	ateri	als			
302045	5- <u>B</u>	Machining Science & Technology		30)205	2-B		Surfa	ce E	ngir	neerii	ng			

Abbreviations: TH: Theory, PR: Practical, TUT: Tutorial, ISE: In-Semester Exam, ESE: End-Semester Exam, TW: Term Work, OR: Oral

Note: Interested students of TE (Automobile Engineering and Mechanical Engineering) can opt for any one of the audit course from the list of audit courses prescribed by BOS (Automobile and Mechanical Engineering)

Instructions:

- Practical/Tutorial must be conducted in FOUR batches per division only.
- Minimum number of Experiments/Assignments in PR/Tutorial shall be carried out **as mentioned in the syllabi** of respective courses.
- Assessment of tutorial work has to be carried out similar to term-work. The Grade cum marks for Tutorial and Term-work shall be awarded on the basis of **continuous evaluation**.
- ^{\$}Audit course is mandatory but non-credit course. Examination has to be conducted at the end of Semesters for award of grade at institute level. Grade awarded for audit course shall not be calculated for grade point & CGPA.

302041: Numerical and Statistical Methods								
Teaching	Scheme	Cred	its	Examina	tion Scheme			
Theory	3Hrs./Week	Theory	3	In-Semester	30 Marks			
Tutorial	1Hr./Week	Tutorial	1	End-Semester	70 Marks			
				Term Work	25 Marks			
Prerequisites:	System of linea	ar equations, Pa	artial differe	entiation, Statistics,	Probability, Problem			
solving and pro	solving and programming.							
1 UNDER	IVES:	ations of aveta	ma of aqua	tions and solve m	ashaniaal anainaanina			
1. UNDER	ions	ations of syste	ms of equa	tions and solve me	echanical engineering			
	ions.	untions to solve	the applica	tions in the domai	n of fluid mechanics			
2. AITLI	al etc		the applica	utons in the domai	II OI HUIG INCCIDENCS,			
3 LEARN	In etc. I numerical integr	pration techniqu	es for engin	eering applications				
4. COMP/	ARE the system	's behavior for t	the experime	ental data.				
5. INTER	PRET Statistica	1 measures for c	uantitative of	data.				
6. ANALY	ZE datasets usi	ng probability t	heory and lin	near algebra.				
Course Outcor	nes:		5					
On completion	n of the course th	ne learner will b	e able to;					
CO1: SOLV	E system of equ	uations using di	rect and itera	ative numerical met	hods.			
CO2: ESTI	MATE solution	s for differential	l equations u	sing numerical tech	miques.			
CO3: DEVE	ELOP solution f	or engineering a	applications	with numerical inte	gration.			
CO4: DESI	GN and CREAT	FE a model usir	ng a curve fit	tting and regression	analysis.			
CO5: APPL	Y statistical Tec	chnique for quar	ntitative data	analysis.				
CO6: DEM	ONSTRATE th	e data, using the	e concepts of	f probability and lin	iear algebra.			
		Cour	se Contents					
Unit 1 Ro	oots of Equation	n and Simultan	eous Equat	ions	07 Hrs.			
Roots of Equat	t ion: Bracketing	method and Ne	wton-Raphs	son method				
Solution of sin	multaneous equ	uations: Gauss	Elimination	n Method with Par	rtial pivoting, Gauss-			
Seidel method,	Thomas algorith	m for Tri-diago	onal Matrix.					
Unit 2 Nu	umerical Soluti	on of Different	ial Equation	ns	08 Hrs.			
Ordinary Diffe	erential Equati	ons [ODE]: Ta	aylor series	method, Euler Met	thod, Runge-Kutta 4 th			
order. Simultan	eous equations u	ising Runge-Ku	tta 2 nd order	method.				
Partial Differential Equations [PDE]: Finite difference method, Simple Laplace method, PDE's								
Parabolic explic	ratabolic explicit solution, Emptic explicit solution.							
Unit3 Ni	Units Inumerical Integration 06 Hrs.							
Numerical Integration (ID): Trapezoidal rule, Simpson's 1/3 rd Rule, Simpson's 3/8 rd Rule, Gauss								
Quadrature2-point and 3-point method.								
Double Integra	mon: mapezolo	iai iuie, Simpsoi	11 S 1/3 KUI	5.				

Unit 4	Curve Fitting and Regression Analysis	08 Hrs.				
Curve Fitt	ing: Least square technique- first order, power equation, exponential	equation and				
quadratic eq	uation.					
Regression Analysis: Linear regression, Nonlinear regression, Multiple regressions, Polynomial						
regression. Lagrange's interpolation, Numerical interpolation and differentiation using Newton's						
forward met	hod, inverse interpolation (Lagrange's method only).					
Unit 5	Statistics	08 Hrs.				
Measures of	f central tendency: mean, median, mode. Measurement of variability an	d dispersion:				
Standard dev	viation, standard error, variance, range. Measure of shape: skewness, kurtos	sis				
Statistical d	iagram: scattered diagram, histogram, pie charts, and measure of associa	tion between				
two variable	s. Correlation: Karl Pearson's Coefficient of correlation and its mathematic	cal properties,				
Spearman's	Rank correlation and its interpretations.					
Unit 6	Probability and Linear Algebra	08 Hrs.				
Probability	: Joint, conditional and marginal probability, Bayes' theorem, independence	e, theorem of				
total probab	ility, expectation and variance, random variables. Probability distribution	ns: Binomial,				
Poisson, Ge	ometric, Uniform, Exponential, Gamma, Normal and Chi square.					
Linear alge	bra: Review of matrix operations, vector and vector spaces, linear mapping	5.				
	Books and other resources	<u></u>				
Text Books	•					
1 Steven (· Chapra 'Applied Numerical Methods with MATLAB for Engineers a	nd Scientist'				
Tata Mc	Graw Hill Publishing Co. I td	na selentist,				
2 B S Gre	wal 'Numerical Methods in Engineering and Science' Khanna Publication	.				
2. D. S. Gre	wal, 'Higher Engineering Mathematics' Khanna Publication	1.				
Beferences	Books.					
1 Erwin Kı	vevszig 'Advanced Engineering Mathematics' Wiley India					
2 Joe D H	offman 'Numerical Methods for Engineers and Scientists' CRC Press					
3 Sheldon	M Ross 'Introduction to Probability and Statistics for Engineers and Scie	ntists' 5e hv				
5. Sheidon	Academic Press	1113ts , 50, 0y				
4 Deisento	th Faisal Ong 'Mathematics for machine learning' Cambridge University	Press				
5 Kandasar	ny 'Numerical methods' S Chand	11055.				
6 Jason Br	ownlee 'Statistical Methods for Machine Learning' Machine learning Mas	terv				
Web Refere	Wob References:					
1 http://np	tel ac in/courses/111101003/					
2 http://nr	otel ac in/courses/111105038/					
3 http://nptel.ac.in/courses/111107063/						
4 http://nptel.ac.in/courses/111105041/						
5. http://nptel.ac.in/courses/111104079/						
6. https://www.analyticsvidhya.com/						
0. <u>https://www.anaryticsvicitya.com/</u>						

List of Tutorials

Term Work shall consist of:

Group A – (Any three programs using suitable programming language)

- 1. Roots of equation
- 2. Simultaneous equations
- 3. Ordinary differential equation
- 4. Partial differential equation
- 5. Numerical Integration

Group B (Any three programs for simple dataset using suitable programing)

- 6. Curve fitting using least square technique
- 7. Regression analysis
- 8. Determine statistical measures
- 9. Probability distribution

Group C (Mandatory)

10. One program based mini project using mechanical engineering application dataset

Note: Tutorials shall be mandatorily conducted in the computer laboratory.

302042: Heat and Mass Transfer							
Teaching	g Scheme	Cred	its	Examination Scheme			
Theory	3 Hrs./Week	Theory	3	In-Semester	30 Marks		
Practical	2 Hrs./Week	Practical	1	End-Semester	70 Marks		
				Practical	50 Marks		

Prerequisites: First and Second Law of Thermodynamics, Fluid properties, Continuity equation, Differential and Integral Calculus, Ordinary differential and Partial Differential Equations, Numerical solution for Differential Equations.

Course Objectives:

- 1. **IDENTIFY** the laws for different modes of heat transfer.
- 2. **UNDERSTAND** the properties and economics of thermal insulation and **ANALYZE** heat transfer through fins and thermal systems with lumped heat capacitance.
- 3. **ANALYZE** the natural and forced convective mode of heat transfer in various geometric configurations.
- 4. **UNDERSTAND AND REALIZE** various laws with their interrelations and analyze Radiation heat transfer in black and grey bodies/surfaces with or without radiation shields.
- 5. **UNDERSTAND** the fundamentals and laws of mass transfer and its applications.
- 6. **ANALYZE** various performance parameters for existing heat exchanger and **DEVELOP** methodologies for designing a heat exchanger under prescribed conditions and for a particular application, with references TEMA standards

Course Outcomes: On completion of the course, learner will be able to

- CO1. **ANALYZE** & **APPLY** the modes of heat transfer equations for one dimensional thermal system.
- CO2. **DESIGN a** thermal system considering fins, thermal insulation and & Transient heat conduction.
- CO3. **EVALUATE** the heat transfer rate in natural and forced convection & validate with experimentation results.
- CO4. **INTERPRET** heat transfer by radiation between objects with simple geometries, for black and grey surfaces.
- CO5. **ABILITY** to analyze the rate of mass transfer using Fick's Law of Diffusion and understands mass diffusion in different coordinate systems.

CO6. **DESIGN & ANALYSIS** of heat transfer equipments and investigation of its performance.

	Course Contents	
Unit 1	Fundamentals of Heat Transfer	08 Hrs.
Basic Con	cepts: Different Modes and Laws of heat transfer, 3-D heat conduction e	equation in
Cartesian of	coordinates (with derivation), and its simplified equations, simplified eq	uations in

cylindrical and spherical coordinates (simplified equations, no derivation) thermal conductivity,

thermal diffusivity, electrical analogy, Thermal contact Resistance.

Т

Boundary and initial conditions: Temperature boundary condition, heat flux boundary condition, convection boundary condition, radiation boundary condition.

1-D steady state heat conduction without and with heat generation: Heat conduction without heat generation in plane wall, composite wall, composite cylinder, composite sphere. Heat conduction with heat generation in Plane wall, Cylinder and Sphere with different boundary conditions.

Unit 2Heat Transfer through Extended Surfaces & Transient Heat Conduction08 Hrs.

Thermal Insulation – Critical thickness of insulation, Types and properties of insulating materials, Safety considerations in thermal insulation, Economic and cost considerations, Payback period, Numerical on payback period.

Heat transfer through extended surfaces: Types of fins and its applications, Governing Equation for constant cross sectional area fins, Solution for infinitely long fin (with derivation), adequately long fin with insulated end tip and short fins (no derivation), Fin Efficiency & Effectiveness of fins, estimation of error in Temperature measurement by thermometer.

Transient heat conduction: Validity and criteria of lumped system analysis, Biot Number, Fourier Number, Time Constant and Response of thermocouple, Use of Heisler Charts for plane wall, cylinder and sphere

Unit 3	Convection	08 Hrs.				
Principles of Convection: Local and average heat transfer coefficient, Hydrodynamic and Thermal boundary layer for a flat plate and pipe flow						
Forced Con	vection: Physical significance of non-dimensional numbers, Empirical corre	ations for				
flat plate, pi	pe flow, and flow across cylinders, spheres, tube banks. ection: Physical significance of non-dimensional numbers. Free convective	on from a				
vertical, hor	izontal surface, cylinder and sphere. Mixed Convection	JI HOIII a				
Boiling and Drop wise c	Boiling and Condensation: Types of boiling, Regimes of pool boiling, Film wise condensation, Drop wise condensation (No Numerical treatment), Critical heat flux.					
Unit 4	Radiation	07 Hrs.				
Thermal Ra Kirchhoff's Lambert's l Radiation h Numerical.	Thermal Radiation; definition of various terms used in radiation mode; Stefan-Boltzmann law, Kirchhoff's law, Planck's law and Wein's displacement law. Intensity of radiation and solid angle; Lambert's law; Radiation heat exchange between two black surfaces, configuration or view factor. Radiation heat exchange between grey surfaces, Electrical analogy for radiation, Radiation shields, Numerical.					
Unit 5	Mass Transfer	07 Hrs.				
Physical origins, applications of mass transfer, Mixture Composition, Phase diagram, Fick's Law of Diffusion with numerical treatment, Restrictive Conditions, Mass diffusion coefficient, Conservation of Species, The Mass Diffusion equation – Cartesian coordinates deviation, cylindrical coordinates and Spherical coordinates (no derivation), Boundary and initial conditions.						

Unit 6:	Heat Exchangers and Equipment Design	07 Hrs.
Unit 6:	Heat Exchangers and Equipment Design	07 Hrs.

Heat Exchangers: Classification and applications of heat exchangers, Heat exchanger analysis – LMTD for parallel and counter flow heat exchangers, Effectiveness– NTU method for parallel and counter flow heat exchangers, cross flow heat exchangers, LMTD correction factor, Heat Pipe, Introduction to electronic cooling - Active and passive methods of augmented heat transfer.

Process Equipment Design: Condenser Design, Introduction to TEMA standards, Design considerations for heat exchangers, Materials of construction and corrosion, Temperature effects, Radiation effects, Economic consideration, Condenser and Heat exchanger design and performance calculations, Design of shell and tube type Heat Exchanger

Books & Other Resources

Text Books:

- 1. Franck P. Incropera, David P. DeWitt Fundamentals of Heat and Mass Transfer,
- 2. Y. A. Cengel and A.J. Ghajar, Heat and Mass Transfer Fundamentals and Applications, Tata McGraw Hill Education Private Limited.
- 3. S.P. Sukhatme, A Textbook on Heat Transfer, Universities Press.
- 4. R.C. Sachdeva, Fundamentals of Engineering Heat and Mass Transfer, New Age Science.
- 5. Joshi's Process Equipment Design, by V.V. Mahajani , S.B. Umarji , Trinity Press

Reference Books:

- 1. P.K. Nag, Heat & Mass Transfer, McGraw Hill Education Private Limited.
- 2. M.M. Rathod, Engineering Heat and Mass Transfer, Third Edition, Laxmi Publications, New Delhi
- 3. V. M. Domkundwar, Heat Transfer, Dhanpat Rai & Co Ltd.
- 4. A.F. Mills, Basic Heat and Mass Transfer, Pearson.
- 5. S. P. Venkatesan, Heat Transfer, Ane Books Pvt. Ltd.
- 6. Holman, Fundamentals of Heat and Mass Transfer, McGraw Hill publication.
- 7. M. Thirumaleshwar, Fundamentals of Heat and Mass Transfer, Pearson Education India.
- 8. B.K. Dutta, Heat Transfer-Principles and Applications, PHI.
- 9. C.P. Kothandaraman, S. V. Subramanyam, Heat and Mass Transfer Data Book, New Academic Science.
- 10. Process heat Transfer, D. Q. Kern, Wiley Publication

NPTEL Links:

E books: Links to be provided

- 1. https://libgen.is
- 2. <u>http://libgen.li/item/index.php?md5=314BFA11A24C3C1ACFDED2B5AB88E5E9</u>

Links of NPTEL / related videos

- 1. <u>https://www.youtube.com/watch?v=qa-PQOjS3zA&list=PL5F4F46C1983C6785</u>
- 2. <u>https://www.youtube.com/watch?v=qa-PQOjS3zA&list=PL5F4F46C1983C6785</u>
- 3. <u>https://www.youtube.com/watch?v=J_zqQcncAu4&index=3&list=PLpCr5N2IS7Nmu22MO</u> <u>gDWOr0sSIIpUNUz3</u>
- $4. \ \underline{https://www.youtube.com/watch?v=SNnd0f3xXlg\&list=PLpCr5N2IS7Nmu22MOgDWOr0s}$

SllpUNUz3&index=11

- 5. <u>https://www.youtube.com/watch?v=SNnd0f3xXlg&list=PLpCr5N2IS7Nmu22MOgDWOr0s</u> <u>SIIpUNUz3&index=11</u>
- 6. <u>https://www.youtube.com/watch?v=lnFjt30goiY&index=18&list=PLpCr5N2IS7Nmu22MOg</u> <u>DWOr0sSIIpUNUz3</u>

Guidelines for Laboratory Conduction

The student shall complete the following activity as a Term Work

Complete eight experiments and two assignments (Sr. no.10 to 13).

- 1. Determination of Thermal Conductivity of insulating powder.
- 2. Determination of Thermal Conductivity of metal rod.
- 3. Determination of local and average heat transfer coefficient in Natural Convection.
- 4. Determination of local and average heat transfer coefficient in Forced Convection.
- 5. Determination of temperature distribution, fin efficiency in Natural / Forced Convection.
- 6. Determination of Emissivity of a Test surface.
- 7. Determination of Stefan Boltzmann Constant.
- 8. Determination of heat transfer, overall heat transfer coefficient and effectiveness of Plate Heat Exchanger.
- 9. Study of Pool boiling phenomenon and determination of Critical Heat Flux (CHF).
- 10. Assignment to solve transient heat transfer problem using Heisler and Grober Charts.
- 11. Design of heat exchanger for any simple application.
- 12. Industrial visit to heat treatment industry/ heat exchanger manufacturing industry.
- 13. Demonstration of dropwise and filmwise condensation.
- 14. Virtual laboratory: study of the performance of heat exchanger /study of variation of Thermal Conductivity.

Link for Virtual Lab: - <u>https://www.vlab.co.in/</u>

	302043: Design of Machine Elements						
Teaching	Scheme	Credi	its	Examina	tion Scheme		
Theory	3Hrs./Week	Theory	3	In-Semester	30 Marks		
Practical	2 Hrs./Week	Practical	1	End-Semester	70 Marks		
				Oral	25 Marks		
Prerequisites: different theorie strength, rigidit series, tolerance Interpolation ru	Prerequisites: The basics of material elastic behavior, stress, strain, its relationship, failure modes, different theories of failure and its applications. The design cycle, basis of design considerations like strength, rigidity, manufacture, assembly and cost, standards and codes. The preferred sizes and series, tolerances and types of fits. Construction of SMD and BMD. Roots of equations, Interpolation rule.						
1. UNDER a specifi 2. CALCU 3. ANALY 4. DESIGN springs	 Course Objectives: UNDERSTAND the various design considerations, design procedure and select materials for a specific application CALCULATE the stresses in machine components due to various types of loads and failure ANALYZE machine components subjected to variable loading for finite and infinite life DESIGN various machine components such as shafts, couplings, keys, screws, joints, 						
Course Outcon	nes:						
On completion	of the course, lea	arner will be abl	le to otter and k	muckle Joints les	vers and components		
subjec	ted to eccentric	loading.		indekie Joints, iev	ers and components		
CO2. DESI	GN shafts, keys	and couplings u	under static l	oading conditions.			
CO3. ANAI	LYZE different	stresses in pov	wer screws	and APPLY those	e in the procedure to		
design	screw jack.						
CO4. EVAI CO5.EVAL threade	CO4. EVALUATE dimensions of machine components under fluctuating loads. CO5. EVALUATE & INTERPRET the stress developed on the different type of welded and threaded joints.						
	T the design and		se Contents	i different types of	springs.		
Unit 1 De	sign of Simpla	Machina Flam	ents		08 Hrs		
Eactor of safety	Selection of F	actor of Safety	Service fact	or Design of Cotte	vr joint Knuckle joint		
Design of hand	/ foot lever. leve	er for safety val	ve. bell crar	ik lever. Design of	components subjected		
to eccentric loading.							
Unit 2 De	esign of Shafts,	Keys and Coup	plings		08 Hrs.		
Shaft design on the Strength basis, torsional rigidity basis and lateral rigidity basis, Design of shaft							
as per A.S.M.E. code. Design of square and rectangular keys, Kennedy key and splines. Design of Flange Coupling and Bushed-Pin Flexible Coupling.							

Unit 3	Design of Power Screws	07 Hrs.			
Terminolog	y of Power Screw, Torque analysis and Design of power screws with	n square and			
trapezoidal	threads, Collar friction torque, Self-locking screw, Efficiency of square the	readed screw,			
Efficiency	of self-locking screw, Design of screw, nuts and C-Clamp. Design of	screw jack,			
Differential	and Compound Screw and Re-circulating Ball Screw (Theoretical treatmen	t only).			
Unit 4	Design against Fluctuating loads	07 Hrs.			
Stress conce	Stress concentration and its factors, Reduction of stress concentration factors, fluctuating stresses,				
fatigue failures, endurance limit, S-N curve, Notch sensitivity, Endurance limit, Endurance strength					
modifying f	factors, Reversed stresses - Design for Finite and Infinite life, Cumulativ	ve damage in			
fatigue failu	rre, Soderberg, Gerber, Goodman Lines, Modified Goodman diagrams, F	atigue design			
under comb	ined stresses:- (Theoretical treatment only.)				
Unit 5	Threaded and Welded joints	08 Hrs.			
Introduction	to threaded joints, Bolts of uniform strength, locking devices, eccentr	ically loaded			
bolted joint	in shear, Eccentric load perpendicular and parallel to axis of bolt, Ecce	ntric load on			
circular base	2.				
Introduction	n to welded joints, Strength of butt, parallel and transverse fillet welds, A	xially loaded			
unsymmetri	cal welded joints, Eccentric load in plane of welds, Welded joints subjected	ed to bending			
and torsiona	l moments.				
Unit 6	Design of Springs	07 Hrs.			
Types and a	applications of springs, Stress and deflection equations for helical compres	sion Springs,			
Springs in s	eries and parallel, Design of helical springs, concentric helical springs, su	rge in spring,			
Design of M	Iulti-leaf springs, Nipping of Leaf springs, Shot Peening.				
	Books and other resources				
Text Books	:				
1. Bhai	ndari V.B., Design of Machine Elements, Tata McGraw Hill Publication Co	. Ltd.			
2. Shig	ley J.E. and Mischke C.R., Mechanical Engineering Design, McGraw Hil	ll Publication			
Co.	Ltd.				
References	Books:				
1. Spot	ts M.F. and Shoup T.E., Design of Machine Elements, Prentice Hall Interna	tional.			
2. Juvi	nal R.C., Fundamentals of Machine Components Design, John Wiley and Se	ons.			
3. Blac	k P.H. and O. Eugene Adams, Machine Design, McGraw Hill Book Co. Inc				
4. Will	ium C. Orthwein, Machine Components Design, West Publishing Co	o. and Jaico			
Publ	ications House.				
5. Hall	A.S., Holowenko A.R. and Laughlin H.G, Theory and Problems of Mac	chine Design,			
Schaum's Outline Series.					
6. C. S. Sharma and Kamlesh Purohit, Design of Machine Elements, PHI Learing Pvt. Ltd.					
7. D. K. Aggarwal & P. C. Sharma, Machine Design, S.K Kataria and Sons.					
8. P. C. Gope, Machine Design: Fundamentals and Applications, PHI Learing Pvt. Ltd.					
9. Design Data - P.S.G. College of Technology, Coimbatore.					
10. K. N	Iahadevan, K. Balveera Reddy, Design Data Handbook for Mechanical En	gineers, CBS			
Publ	ishers.				

Term Work

The student shall complete the following activity as a Term Work;

The term work shall consist of three design projects. The design project shall consist of assembly drawing, with a bill of material and overall dimensions and drawings of individual components. The Project should be assigned to a group of maximum four students. Manufacturing tolerances, surface finish symbols and geometric tolerances should be specified for important surfaces. A design report giving all necessary calculations of the design of components should be submitted in a separate file. Design data book shall be referred for selection of materials and standard components for given loading conditions. All three design projects should be carried out using suitable software.

Project 1: - Cotter joint/ knuckle joint/turn buckle for a specified application.

Project 2: - Bush Pin Flexible Coupling for specified application.

Project 3: - Bottle type/toggle jack for vehicles.

Web References:

OR

Project 3: - A Design Project to develop and apply the knowledge of Machine Design and drafting software for any mechanical system on the basis of: (1) Idea generation, (2) Creativity, Reliability and safety, (3) Design parts of the system (4) Ergonomic Considerations (5) Use of International standards.

	UNIT 1: Desig	n of Simple Machine Elements					
Sr. No	Topic Title	NPTEL video Link					
1	Factor of safety, Selection of Factor of Safety, Service factor	https://www.youtube.com/watch?v=ofmbhbVCU gI&list=PL3D4EECEFAA99D9BE&index=3					
2	Design of components subjected to eccentric loading.	https://www.youtube.com/watch?v=py5xbKHGA					
	UNIT 2: Design of Shafts, Keys and Couplings						
3	Design of shaft as per A.S.M.E. code	https://www.youtube.com/watch?v=SL21aDqgs8Q					
4	Design of a C-Clamp. Design of screw jack,	https://youtu.be/PEKfS2Q1WqM https://www.youtube.com/watch?v=PEKfS2Q1WqM&li st=PL3D4EECEFAA99D9BE&index=19					
5	Differential and Compound Screw and Re-circulating Ball Screw	https://www.youtube.com/watch?v=TPURJnlekeo					
	UNIT 4: Desi	gn against Fluctuating Loads					
6	Cumulative damage in fatigue failure,	https://www.youtube.com/watch?v=WRoPQGE0WdI					
7	Soderberg, Gerber, Goodman Lines, Modified Goodman Diagrams	https://www.youtube.com/watch?v=WRoPQGE0WdI					
8	Fatigue design under combined stresses	https://www.youtube.com/watch?v=WRoPQGE0WdI					

	UNIT 5: Threaded and Welded joints						
9	Eccentrically loaded bolted joint in shear, Eccentric load perpendicular and parallel to axis of bolt	https://www.youtube.com/watch?v=py5xbKHGA https://www.youtube.com/watch?v=YZYcMtkZiDY					
10	Eccentric load on circular base	https://www.youtube.com/watch?v=py5xbKHGA					
11	Eccentric load in plane of welds, Welded joints subjected to bending and torsional moments	https://www.youtube.com/watch?v=py5xbKHGA https://www.youtube.com/watch?v=YZYcMtkZiDY					
	UNIT	6: Design of Springs					
12	Surge in spring	https://www.youtube.com/watch?v=tTBnW5gAieM					
13 Shot Peening.		https://www.youtube.com/watch?v=46quOD7V-cQ					
14	Design of Multi-leaf	https://youtu.be/T4IgtIkBnOo					

302044: Mechatronics							
Teaching	Scheme	Cred	its	Examination Scheme		neme	
Theory	3Hrs./Week	Theory	3	In-Semester	3() Marks	
Practical	2 Hrs./Week	Practical	1	End-Semester	7() Marks	
				Oral	25	5 Marks	
Prerequisites: communication gates.	Prerequisites: Basics of Electrical components, Binary to Decimal Conversion, Data communication Module, Op amp Circuits, Linear Algebra, Laplace Transformation method, Logic gates.						
Course Object	ives:						
1. UNDER	RSTAND the	key elements	of mecha	tronics, principle	of ser	nsor and its	
characte	ristics.						
2. UNDER	RSTAND the co	oncept of signa	l processing	and use of interfa	acing sys	stems such as	
3 UNDER	RSTAND the blo	ock diagram ren	resentation	and concept of trans	sfer func	tion	
4. UNDER	RSTAND the sy	stem modeling a	and analysis	in frequency doma	in.	tion.	
5. UNDER	RSTAND the sy	stem modeling	and analysis	in time domain, co	ontroller	modes and its	
industria	al applications						
6. UTILIZ	ZE the concepts	of PLC system	and its ladd	er programming an	d signifi	cance of PLC	
system i	n industrial app	lication.					
Course Outcom	nes:		1				
CO1 DEEL	of the course, le	arner will be ab	le to	of concor and its al	araatari	stics	
CO2 UTU	IZE concept (s of mechanom	cs, principle sing and \mathbf{M}	AKE use of interfe		sucs.	
	DAC Digital I/	\cap	sing and wi	ARE use of intern	acing sys	stems such as	
CO3 DETE	ERMINE the tra	o. Insfer function h	w using bloc	ek diagram reductio	n technia	me	
CO4. EVAI	LUATE Poles a	nd Zero, freque	ncv domain	parameter for math	ematical	modeling for	
mecha	nical system.	, 1		1		8	
CO5. APPL	Y the concept o	f different conti	coller modes	to an industrial app	olication.		
CO6. DEVE	ELOP the ladder	r programming	for industria	l application.			
		Cour	se Contents				
Unit 1 In	troduction to N	Iechatronics, S	ensors & A	ctuators		07 Hrs.	
Introduction to	Mechatronics ar	d its Applicatio	ons Measure	ment Characteristic	es (Static	/Dynamic),	
Sensors: Types	s of sensors; N	Iotion Sensors	– Encoder	(Absolute & incre	emental),	Lidar, Eddy	
Current, Proximity (Optical, Inductive, Capacitive), MEMS Accelerometer;							
Temperature sensor -Pyrometer, Infrared Thermometer; Force / Pressure Sensors - Strain gauges,							
Piezoelectric sensor; Flow sensors - Electromagnetic, Ultrasonic, Hot-wire anemometer; Color							
sensor – RGB type; Biosensors – Enzyme, ECG, EMG							
Actuators: Ser	vo motor; Hydra	aulic and Pneum	natic (must b	be restricted to class	sification	and working	
of one type of li	near and rotary	actuator); linear	electrical a	ctuators Selection	of Sensor	r & Actuator	

Unit 2 Data Acquisition and Signal Communication	08 Hrs.
Signal Communication: Serial, Parallel; Synchronous, Asynchronous	
Introduction to DAQ, Types, Components of a Data Acquisition System	(Sensor, Signal
conditioning, processing, controlling and storage/display/action)	
Data Acquisition: Signal collection, Signal conditioning - Isolation& Filtering	, Amplification,
Sampling, Aliasing, Sample and hold circuit, Quantization, Analog-to-digital	converters (4 bit
Successive Approximation type ADC), Digital-to-Analog converters (4 bit R2R	ype DAC), Data
storage Applications: DAQ in Household ,Digital Pressure Gauge, Digital Flow me	asurement, DVB
Digital Video Broadcast, AM/FM	
Unit 3 Control systems & transfer function based modelling	07 Hrs.
Introduction to control systems, need, Types- Open and Closed loop, Concept of T	ransfer Function,
Block Diagram & Reduction principles and problems; Applications (Househousehousehousehousehousehousehouseh	old, Automotive,
Industrial shop floor)	
Transfer Function based modeling of Mechanical, Thermal and Fluid system; Co	ncept of Poles &
Zeros; Pole zero plot, Stability Analysis using Routh Hurwitz Criterion (Numerical	Approach)
Unit 4 Time and Frequency Domain Analysis	08 Hrs.
Time Domain Analysis – Unit step Response analysis via Transient respon	se specifications
(Percentage overshoot, Rise time, Delay time, Steady state error etc.)	_
Frequency Domain Analysis - Frequency Domain Parameters - Natural Freq	uency, Damping
Frequency and Damping Factor; Mapping of Pole Zero plot with damping factor, i	natural frequency
and unit step response ; Introduction to Bode Plot, Gain Margin, Phase Margin	07 Цис
Unit 5 Controllers	U/ HIS.
control actions: PL PD and PID control systems in parallel form: (Numerical	approach) Feed
forward anticipatory control	upprouen), reed
Manual tuning of PID control, Ziegler–Nichols method	
Applications: Electro–Hydraulic/Pneumatic Control, Automotive Control	
Unit 6Programmable Logic Controller (PLC)	08 Hrs.
Introduction to PLC; Architecture of PLC; Selection of PLC; Ladder Logic I	orogramming for
different types of logic gates; Latching; Timers, Counters; PLC control of Hydrauli	cs / Pneumatics /
Mechatronics systems involving timing and counting operations.	
Books and other resources	
Text Books:	
1. William Bolton, Mechatronics: Electronics Control Systems in Mechanical and	
Electrical Engineering, 6th Ed, 2019	
2. K.P. Ramchandran, G.K. Vijyaraghavan, M.S. Balasundaram, Mechatro	nics: Integrated
Mechanical Electronic Systems, Willey Publication, 2008	
References Books:	
1. Alciatore and Histand, Introduction to Mechatronics and Measurement Systems	s, 5th Ed, 2019
2. Bishop (Editor), Mechatronics – An Introduction CRC 2006	
3. Mahalik, Mechatronics – Principles, concepts and applications, Tata Mc-Graw	
publication New Delhi	Hill
publication, New Denn	Hill
4. C.D.Johnson, Process Control Instrumentation Technology, Prentice Hall,New	Hill Delhi

Web References:

- 1. <u>https://www.elprocus.com/what-is-a-biosensor-types-of-biosensors-and-applications/</u>
- 2. https://www.elprocus.com/color-sensor-working-and-applications/
- 3. <u>https://www.youtube.com/watch?v=kbjCGGTXqUo&ab_channel=Controlengineering</u>
- $4. \ \underline{https://youtu.be/clTA0pONnMs?list=PLHMDN3JFtE5wEz95H2XuzRaafK3fUsaki}$
- 5. <u>https://nptel.ac.in/content/storage2/courses/108105063/pdf/L-</u> 12(SS)%20(IA&C)%20((EE)NPTEL).pdf
- https://nptel.ac.in/content/storage2/courses/112104158/lecture5.pdf

Term Work

The Term work shall consist of completion of Practical, Self-learning Study Assignments and Presentations. Oral examination shall be based on the Term work undertaken during the semester. **Practical (Any one** experiments out of experiment no **1 to 3** from the following list whereas experiment no. **4 to 10** are mandatory).

- 1. Experiment on measurement of temperature using suitable sensor.
- 2. Experiment on measurement of load using suitable sensor.
- 3. Experiment on measurement of displacement using suitable sensor.
- 4. Development of a data acquisition / mechatronics system using low cost open source hardware and software.
- 5. Experiment on interfacing of suitable sensor and actuator with DAQ.
- 6. Modeling and analysis of mechanical system and its verification using suitable simulation software.
- 7. PID control of Mechanical System using suitable simulation software and experimental verification (verification only if experimental setup is available).
- 8. Ladder Logic Simulation of suitable application.
- 9. Demonstration of PLC controlled electro hydraulic / elector pneumatic circuit.
- 10. Industrial visit to understand integration and application of Mechatronics.

Assignments:

- 1.Application of Sensors and Actuators in Health Science and Selection of Suitable Sensor and Actuator.
- 2. Block Diagram Representation of Feedback Control System and determination of Closed Loop Transfer Function.

302045-A: Advanced Forming & Joining Processes					
Teaching	Teaching Scheme		Credits		tion Scheme
Theory	3Hrs./Week	Theory	Theory3In-Semester30 Marks		
				End-Semester	70 Marks
Prerequisite C	ourses: Manufa	acturing Process	ses, Enginee	ring Materials and	Metallurgy, Machine
shop					
Course Objecti	ives:	aan in shaat mat	al famina a		
1. UNDER	SIAND advand	ces in sheet met	al forming o	perations	
2. UNDER	STAND the ad	valiced special i	ueld charact	ig processes.	
3. UNDER	STAND weld I	scribe various a	dvanced sol	id state welding pro	
5 CLASS	IFY AND DES	CRIRE various	advanced w	relding processes	
6. KNOW	about sustainab	le manufacturin	g and its rol	e in manufacturing	industry
Course Outcon	nes:		8 4114 105 101	8	
On completion	of the course, le	arner will be ab	le to		
CO1. ANAI	LYSE the effect	of friction in r	netal formin	ng deep drawing an	d IDENTIFICATION
of surf	face defects and	their remedies i	in deep draw	ving operations	
CO2. ASSE	SS the paramet	ers for special	forming ope	eration and SELEC	T appropriate special
formir	ng operation for	particular applie	cations		
CO3. ANAI	LYSE the effect	of HAZ on mic	rostructure a	and mechanical prop	perties of materials
CO4. CLAS	SIFY various s	olid state weldi	ng process a	and SELECT suita	ble welding processes
for par	rticular applicati	ons			
CO5. CLAS	SIFY various a	dvanced weldin	ng process a	and SELECT suital	ble welding processes
for par	rticular applicati	ons.			
CO6. INTE	RPRET the pri	nciples of susta	ainable man	ufacturing and its	role in manufacturing
indust	ry.		0 4 4		
		Cour	se Contents		
Unit 1 M	echanics of She	et Metal Form	ing		08 Hrs.
Theory of plas	ticity – yield cri	teria-work of p	lastic deforn	nation- Sheet Metal	Forming-Formability
studies-convent	ional processes,	Effect of fricti	on in formir	ng operation, Exper	imental techniques of
evaluation of f	riction in meta	l forming, dee	p drawing,	analysis (Numer	ical), surface defects
identification and remedies, introduction to Forming simulation, Challenges in Forming.					
Unit 2 Special Forming Processes 08 Hrs.					
Special Formit	ng Processes:	HVF, HERF (E	xplosive For	rming) techniques-	super plastic forming
A dyon to cool lim	itations and are	uti iorining, La	ser beam IO	numg-principles an	al forging Isothermal
Hot and cold is	mations and app	High speed or	trusion W	ng processes. Offili ater hammer formi	at torging-isouterinal-
forming Magne	ostatic pressilig	g-ringii speeu ez na Metal Sninni	ing Electro	Hydraulic Forming	Micro forming
		is, metal spillin	ing, Littli0	riyuraune ronning,	, miero romning.

Unit 3 Weld Metallurgy	07 Hrs.
Weld Metallurgy: Weld thermal cycles and their effects, effects of pre and po	ost weld heat
treatments, concept of HAZ, concept of weldability and its assessment. Welding	of dissimilar
materials, Weld characterization, Weld decay and weld sensitization, Introduction	on to ASME,
ASWE, IS Welding Standards, (welding skill levels).	
Unit 4 Solid State Welding Processes	07 Hrs.
Solid State Welding Processes: Cold pressure welding, Diffusion bonding, Explo	sive welding,
Ultrasonic welding, Friction stir welding, Forge welding, Roll welding and Hot pre	ssure welding
processes - features, advantages, limitations and applications, Advances in adher	sive bonding,
cladding.	
Unit 5 Advanced Welding Processes	08 Hrs.
Advanced Welding Processes: Electrogas, electroslag welding, Atomic hydro	gen welding,
Electron beam welding, Laser Beam welding - principle, working and applications	s, Cold Metal
Transfer - concepts, processes and applications, Underwater welding, Welding a	automation in
aerospace, nuclear and surface transport vehicles, Robotic Welding, Plasma Arc We	lding, Plasma
Transferred Arc Welding.	
Unit 6 Sustainable Manufacturing	07 Hrs.
Sustainable Manufacturing: Introduction to sustainability and drivers for sustainable	e development
and sustainable manufacturing, fundamentals of sustainable manufacturing, various to	ols, factors of
sustainability, Principles of Life Cycle Assessment (Goal, Scope and Life Cycl	le Inventory),
Approaches, Role in Industry 4.0, Green Manufacturing, Environment protection norm	is, ISO 14000,
recycling techniques, safety norms in forming and welding, socio-economic aspects,	case study on
waste recycling, material recycling, etc.	
Books and other resources	
Text Books:	
1. Sindo Kou, "Welding Metallurgy", Wiley Publications Second Edition	
2. Dr. V. D. Kodgire and S. V. Kodgire, "Material Science & Metallurgy For Eng	ineers",
Everest Publication	
3. William D. Callister, "Materials Science and Engineering an Introduction", Jr, 3	John Wiley &
Sons, Inc.	
4. O.P. Khanna, "Welding Technology", Dhanpat Rai & Sons Publications Editio	n 2015
5. Dr. R. S. Parmar, "Welding Processes and Technology", Khanna Publications E	dition 2017
6. J. Paulo Davim, "Sustainable Manufacturing", Wiley Publications Edition 2010)
References Books:	
1. Z. Marciniak, J.L.Duncan, "Mechanics of Sheet Metal Forming", Butterworth	n Heinemann-
	D 11' 1
2. Dr. Sadhu Singh, "Theory of Plasticity and Metal Forming Processes", Khan Edition 2008	ina Publishers
3. O.P. Khanna, "Engineering Metallurgy", Dhanpat Rai & Sons Publications	
4. Ali Hasan - Islam Nawaz, "Advanced Welding Technology", SCITECH Publ	ications India
Pvt. Ltd. Edition 2018	
5. Dr. K. S. Yadav, "Advanced Welding Technology", Rajsons Publications Pvt.	Ltd.
6. Tool and Manufacturing Engineers' Handbook: Forming V by Charles Wie	ck Publisher

: Society of Manufacturing Engineers; 4th edition (1 Aug. 1996)

- 7. Dornfeld and David, "Green Manufacturing" Fundamentals and Applications, DOI 10.1007/978.1.4419.6016.0_2, Springer Science +Business Media, New York 2013.
- 8. R. Ganesh Narayanan, Jay S Gunasekera,"Sustainable Material Forming and Joining", by CRC Press 2020.

Web References:

- 1. NPTEL Course on "Forming" by Dr. R. Chandramouli, IIT Madras
- 2. NPTEL Course on "Welding Engineering" by Dr. D. K. Dwivedi, IIT Roorkee
- 3. NPTEL Course on "Advances in welding and joining technologies" by Prof. SwarupBag IIT Guwahati.
- 4. NPTEL Course on "Welding Metallurgy" by Prof. Pradeep K. Jha, IIT Roorkee
- 5. NPTEL Course on "Sustainability through Green Manufacturing System An Applied Approach" by Prof. Deepu Philip IIT Kanpur and Dr. Amardeep Singh Oberaoi, NIT Jalandar.

302045-B:Machining Science & Technology					
Teaching Scheme		Cred	its	Examination Scheme	
Theory	3Hrs./Week	Theory	3	In-Semester	30 Marks
				End-Semester	70 Marks
Prerequisites:	Mechanics, Gear	r terminology, N	Material prop	perties, Degree of fi	reedom.
Course Objecti	ives:				
1. KNOW	about fundamen	ntals of metal cu	itting proces	s, tool wear and too	ol life.
2. IMPAR	T the knowle	dge of machin	ning pheno	menon like milli	ng, gear and thread
manufac	turing, grinding	, super finishing	g, etc.		
3. UNDER	STAND the bas	sic concepts, im	portance and	d functions of Jigs,	Fixtures.
4. PREPA	RE list of ope	rations, tools,	set of man	ufacturing instructi	ions and selection of
quality a	ssurance metho	d.			
5. GENER	ATE CNC prog	gram for approp	riate machin	ing processes like	turning and milling.
Course Outcon	nes:				
On completion of	of the course, lea	arner will be ab	le to		
CO1. DEF	INE metal cuttin	ng principles an	d mechanics	of metal cutting ar	nd tool life.
CO2. DES	CRIBE features	of gear and thr	ead manufac	cturing processes.	
CO3. SEL	ECT appropriat	te grinding wh	eel and der	monstrate the vari	ous surface finishing
proce	esses.			1	
CO4. SEL	ECT appropriate	e jigs/fixtures ai	nd to draw th	ne process plan for a	a given component.
CO5. SELL	ECT & EVALU	ATE various p	arameters of	process planning.	1 .1 .
CO6. GEN	ERATE CNC p	brogram for Tur	ning / Millin	ig processes and ge	nerate tool path using
CAM	l sonware.	Cour	a Contonta		
		Cour	se Contents		
Unit 1 Me	echanics of Me	tal Cutting			08 Hrs.
Introduction to	metal cutting, E	lements of macl	hining proce	ss, Geometry of sir	gle-point cutting tool,
Orthogonal and	Oblique cutting	processes,			
Chip formation	, Types of chi	ps, Chip thick	ness ratio,	Process parameters	s and their effect on
machining, chip	breakers,				
Merchant's Cire	cle of forces an	alysis – forces	and energy	calculations, powe	er consumed – MRR-
Effect of Cuttin	g variables on fo	orces,			
Concepts of Ma	achinability- Fa	ctors affecting	machinabilit	ty, Machinability I	ndex, Tool Life, Tool
life equation of Taylor, Tool wear and its types, Factors affecting on tool life.					
Unit 2 Ge	ear and Thread	Manufacturin	g	<u> </u>	07 Hrs.
Introduction, M	laterials of gea	rs, Methods of	gear manu	ifacturing-casting,	forging, forming etc,
mining of gears	s (indexing met	noas and nume	erical), Helic	cal gear cutting, Ge	ear Snaping and Gear
Thread Marrie	inspection.	mathada af	throad man-	footuming thread	lling die three die = 0
topping Thread	milling Thread	ous memous of a	uneau manu	nacturing, thread ro	ming, the threading &
apping, Inread	mining, Inread	grinding etc.			

Unit 3	Grinding & Surface finishing	08 Hrs.
Types and (Operations of grinding machines, Grinding wheel- Shapes, Designation a	and selection,
Abrasives &	c classification, Bond & bonding, Grit, Grade & Structure of wheels, Type	es of grinding
wheels, mou	inting of grinding wheels, Glazing and loading of wheels, Dressing and trui	ng of wheels,
Balancing of	f wheels, Diamond wheels.	
Super-finis	hing processes - Introduction to Honing, Lapping, Buffing and	Burnishing.
(Constructio	n, working and controlling parameters)	
Unit 4	Jigs and Fixtures	08 Hrs.
Significance	and purpose of jigs and fixtures and their functions in the manufacturin	ng processes,
Concept of	degree of freedom, 3-2-1 principle of location. General guidelines to de	sign jigs and
fixtures, adv	antages of jigs and fixtures.	
Jigs- Defin	ition, Elements of jig with the types, Location guidelines, Principles	of clamping,
Principles o	f guiding, Channel jig, Template jig, Plate jig, Angle plate jig, Turn over	jig, Box jig,
Latch type ji	lg.	
Fixtures: D	efinition. Elements of fixtures, Location guidelines, Principles of clampin	ng, Principles
of setting e	element, turning fixture, welding fixture, Milling fixture, Assembly an	d Inspection
fixtures.		
Unit 5	Process Planning	06 Hrs.
Introduction	- methods of process planning, drawing interpretation, material evaluat	tion, steps in
process sele	ction, production equipment and tooling selection, process parameters ca	alculation for
various proc	luction processes, Selection of jigs and fixtures, selection of quality assura	nce methods,
documents f	or process planning, Economics of process planning, case studies.	
Unit 6	CNC Programming	08 Hrs.
CNC Progra	amming-CNC part programming adaptable to suitable controller. Steps i	n developing
CNC part p	rogram. CNC part programming for Lathe Machine - Threading & Gr	ooving cycle
(Canned cy	cle). CNC part programming for Milling Machine - Linear & circular	interpolation,
milling cutt	er, tool length compensation & cutter radius compensation. Pocketing, o	contouring &
drilling, sub	routine and Do loop using canned cycle.	
	Books and other resources	
Text Books		
1. A Te	ext Book of Production Technology, P. C. Sharma, S.Chand Publications	
2. A Te	ext Book of Manufacturing Technology, R. K. Rajput, Laxmi Publications (p) LTD
3. A Te	ext book of Manufacturing Technology, Metal Cutting and Machine Tool	s, P. N. Rao,
Vol.	2, 2nd edition, Tata McGraw Hill Publishing Co. Ltd, New Delhi, 2002	
4. Elem	nents of Workshop Technology, Vol-II, S. K. HajraChaudhary, Med	ia Promoters
&Pu	blications Pvt Ltd.	
5. S.K	Sinha, CNC Programming using Fanuc Custom Macro B, McGraw-Hill Program Fanuc Custom Macro B, McGraw-Hill Program Fanuc Custom Fanuc Cus	rofessional
References	Books:	
1. Theo	ory of Metal Cutting, M. C. Shaw, 1st Edition, Oxford and I.B.H. publishing	g, 1994
2. Jigs	& Fixtures, P.H. Joshi, Third edition, McGraw Hill, 2017	
3. Prod	uction Technology Manufacturing Systems VOL-I & II, R. K. Jain, Khanna	a Publishers
4. Prod	uction Technology –HMT, Tata McGraw Hill publication	
5. An E	Expert Process Planning System, Chang, T. C., Addison Wesley Longman,	1990

- 6. Process Planning- Design/Manufacture Interface, Scallan P, Butterworth-Heinemann, 2003
- 7. CNC Machines, B. S. Pabla, M. Adithan, New Age International, 2018
- 8. Manufacturing Science, Amitabh Ghosh and AshokKumar Mallik, Affiliated East-West Press, 2010

Web References:

- 1. https://nptel.ac.in/content/storage2/courses/108105063/pdf/L-
- 2. https://nptel.ac.in/content/storage2/courses/112105127/pdf/LM-32.pdf
- 3. https://nptel.ac.in/content/storage2/courses/112105127/pdf/LM-34.pdf
- 4. <u>https://nptel.ac.in/courses/112/107/112107143/</u>

302046: Digital Manufacturing Laboratory					
Teaching	Teaching Scheme		Credits		ation Scheme
Practical	2 Hrs./Week	Practical	1	Term Work	50 Marks
Prerequisites:	Construction an	d operating of	conventiona	l machine tools, pr	inciples of machining
and forming pr	cocesses, cutting	g tool and mac	chining para	meters, programmi	ing languages like C,
Python etc., bas	ics of 3D printin	ng.			
Course Objecti	ives:				
1. ACQUI	RE skills to har	dle conventiona	al machines	and CNC machine	for manufacturing of a
compone	ent.				
2. PREPA	RE manual part	program for gi	ven compon	ent as per ISO stand	dards.
3. ACCUS	TOM skills of A	Additive manuf	acturing tech	nnology.	
4. APPRE	CIATE the infl	uence of cutting	g tool parame	eters on the perform	nance.
5. APPLY	Digital Manufa	cturing tools fo	r process sin	nulation of manufac	cturing processes.
6. SELEC	T appropriate ty	pe of jigs and f	ixtures for a	given component	
Course Outcon	nes:		1. 4.		
On completion	of the course, le	arner will be ab	le to		1. 1.4.11
COLDEVE Manuf	LOP a compo	nent using con	iventional n	nachines, CNC m	achines and Additive
	NZE autting to	ques.		airran iah	
CO2.ANAL	A LE Culling lo	or parameters in	or machining	g given job.	Naital Manufasturina
	JINSIKAIE SI	inutation of n	lanuracturing	g process using I	ngitai Manufacturing
CO4 SEL E	CT and DESIC	N ijos and Fixti	tree for a giv	an component	
CO5 DEMO	ONESTRATE (lifferent parame	aters for CN([¬] retrofitting and re	conditioning
	G	uidelines for L	aboratory (Conduction	conditioning.
The learner shal	ll complete the f	ollowing activit	ty as a Term	Work	
1 Demons	tration of cuttin	g tool geometry	v and nomer	clature of the tools	s used in conventional
and CN0	\mathbb{C} machines.	g toor geometr.			, used in conventional
2. Machini	ng of a mechan	ical component	using conv	entional machines	such as lathe, drilling.
milling.	grinding and	anv additional	machine	tool or processes	as per requirement.
Manufac	cturing drawing	with appropria	ate geometri	cal and dimension	al tolerances, detailed
process	planning to be in	ncluded.	0		·····, ····
3. Preparin	g manual CNC	part program u	sing G Code	es and M Codes as	per ISO (DIN 66025)
and RS2	274 standards for	CNC lathe/mil	ll machine.		1 ()
4. Machini	ng of mechan	ical componer	nt using C	NC machine (La	the/Mill/HMC/VMC).
Manufac	cturing drawing	with appropria	ate geometri	cal and dimension	al tolerances, detailed
process	planning to be in	ncluded.	U		
5. Demons	tration of Addi	tive Manufactur	ring technolo	ogy (from modellin	ng to printing) (To be
performe	ed Batch-wise)		-		
6. Demons	tration of the	usage of Digi	tal Manufac	cturing tools for p	process simulation of
manufac	turing processe	s like casting,	forging, she	et metal, plastic p	rocessing (free / open
source s	oftware)	-		_	

- 7. Demonstration of various types of jigs and fixtures, and a case study on design and use of Jigs & Fixture for any given component.
- 8. Preparing Online Calculator/Catalogue for selection of cutting parameters by using programming languages like C, Python etc.
- 9. Study on CNC retrofitting and reconditioning
- 10. Visit to an Industry which uses advanced manufacturing processes

Please note following instructions regarding Laboratory Conduction:

- 1. Sr. No. 1 to 7are mandatory and any 2 from Sr. No. 8 to 10.
- 2. Practical are to be performed under the guidance of concerned faculty member.
- 3. Journal should consist of Job Drawing, Process Sheet and Program, appropriate write-up and shall be part of term-work submission.

302047: Skill Development							
Teaching	Teaching Scheme		Credits Examination Scheme		Credits		tion Scheme
Practical	2 Hrs./Week	Practical	1	TW	25 Marks		
Prerequisites: Students should have knowledge of Construction and working of IC engine /							
compressor / ge	ear box / centrifu	ıgal pump/tail s	stock. Worki	ng principles of any	y type of mechanism /		
power plants. V	Vorking of elect	ric and hydraul	ic systems o	f 4 wheeler vehicle	. Working of machine		
tools, engine	and transmissi	on of differe	nt automot	ive and home a	ppliances. Advanced		
manufacturing	processes. Solid	mechanics and	design of ma	achine elements.			
Course Object	ives:						
1. INTRO	DUCE the skill	s required in a	n industry s	uch as design, deve	elopment, assembly &		
disassen	nbly.						
2. DEVEL	OP the skills r	equired for fat	ilt diagnose	of engine and trar	smission of different		
3 ESTAB	LISH the skills	required for ma	s. intenance of	any machine tool			
4. CREAT	\mathbf{E} awareness ab	out industrial er	nvironment.	any machine tool.			
Course Outcor	nes:						
On completion	of the course, le	arner will be ab	le to				
CO1.APPL	Y& DEMONS	FRATE proced	ure of assem	bly & disassembly	of various machines.		
CO2.DESI	GN & DEVELO)P a working/m	odel of mac	hine parts or any ne	w product.		
CO3.EVAL	UATE fault wit	h diagnosis on	the machine	s, machine tools and	d home appliances.		
CO4.IDEN	TIFY & DEMO	DNSTRATE th	e various ac	tivities performed	in an industry such as		
	chance, design 0.	Cour	se Contents				
1 Assemb	ly and Disassem	bly of any of th	e following	mechanical system	s/ subsystems: bicycle		
(geared)	. e-Bikes, e-Mo	tor Cycles. Dro	nes. Flving	devices, gear box. I	C engines, centrifugal		
pump et	c.	5	, , , ,				
2. Assemb	ly- Disassembly	/ Fault diagnosi	s of home a	opliances such as m	ixer, grinder, washing		
machine	e, fan, ovens, ga	s geyser, chopp	ping machin	e, kneading machin	e, exercise machines,		
etc.	mont and domain	atuation of war	lzin a /animat	ion model of only m	achanian		
3. Develop	a circuit of elect	istration of wor	c system of	wheelers and its ve	erification		
		ie und nydrudn	OR	wheelers and its v			
Circuit	design /PCB de	sign using soft	ware for cor	ntrol of BLDC elec	tric motors used in e-		
Vehicles	5.						
5. Underta	ke total preventi	ve maintenance	for any mad	chine tool or mechan	nical system.		
$\begin{array}{ccc} \text{o. V1S1t to} \\ 7 & \text{Use of } \end{array}$	an industry for a	wareness about	preventive provide sign of hand	tools control in a	tomobile dashboards		
human c	operated mobile	devices.	sign of hallu		nomoune dashibuarus,		
	-						

- 8. Use of alternative materials in the construction of daily activity machine and tool components
- 9. Interpretation of Drawings; Exercises in identifying the type of production, extracting important functional dimensions, checking the number of parts in an assembly. Checking and listing missing dimensions.
- 10. Exercises in -preparation of detailed production drawings as per BIS standard of simple machine parts having relevant notes and indications (limits/tolerances, surface finish, the process of production, relevant tools, materials, measuring instruments).

The documentation activity as a part of the Term work shall not be restricted to merely generation of 2D/3D CAD Drawings with dimensions (as applicable), Exploded View, Flowchart of Maintenance Work etc. but can be beyond.

Skill Development Documentation Diary must be maintained by every student.

302048: Audit Course V						
Teaching SchemeCreditsExamination Scheme						
	Non-Credit					
GUIDELINES FOR CONDUCTION OF AUDIT COURSE						

Faculty mentor shall be allotted for individual courses and he/she shall monitor the progress for successful accomplishment of the course. Such monitoring is necessary for ensuring that the concept of self-learning is being pursued by the students 'in true letter and spirit'.

- If any course through Swayam/ NPTEL/ virtual platform is selected the minimum duration shall be of 8 weeks.
- However if any of the course duration is less than the desired (8 weeks) the mentor shall ensure that other activities in form of assignments, quizzes, group discussion etc. (allied with the course) for the balance duration should be undertaken.

In addition to credits courses, it is mandatory that there should be an audit course (non-credit course) from third year of Engineering. The student will be awarded grade as AP on successful completion of the audit course. The student may opt for any one of the audit courses in each semester. Such audit courses can help the student to get awareness of different issues which make an impact on human lives and enhance their skill sets to improve their employability. List of audit courses from the list of courses mentioned. Evaluation of the audit course will be done at institute level.

The student registered for audit course shall be awarded the grade AP and shall be included such grade in the Semester grade report for that course, provided student has the minimum attendance as prescribed by the Savitribai Phule Pune University and satisfactory in-semester performance and secured a passing grade in that audit course. No grade points are associated with this 'AP' grade and performance in these courses is not considered in the calculation of the performance indices SGPA and CGPA. Evaluation of the audit course will be done at institute level itself.

List of Courses to be opted (Any one) under Audit Course V

- Entrepreneurship and IP strategy
- Engineering Economics
- Mangment of Inventory Systems

The titles indicated above are subject to change in time to come and such an alteration (if any) should be brought to the notice of the BOS.

Using NPTEL Platform: (preferable)

NPTEL is an initiative by MHRD to enhance learning effectiveness in the field of technical education by developing curriculum based video courses and web based e-courses. The details of NPTEL courses are available on its official website www.nptel.ac.in

• Students can select any one of the courses mentioned above and has to register for the

corresponding online course available on the NPTEL platform as an Audit course.

- Once the course is completed the student can appear for the examination as per the guidelines on the NPTEL portal.
- After clearing the examination successfully; student will be awarded with a certificate.

Assessment of an Audit Course

- The assessment of the course will be done at the institute level. The institute has to maintain the record of the various audit courses opted by the students. The audit course opted by the students could be interdisciplinary.
- During the course students will be submitting the online assignments. A copy of the same can be submitted as a part of term work for the corresponding Audit course.
- On the satisfactory submission of assignments, the institute can mark as "Present" and the student will be awarded the grade AP on the mark-sheet.

302049: Artificial Intelligence & Machine Learning						
Teaching	Scheme	Cred	its	Examination Scheme		
Theory	3Hrs./Week	Theory	3	In-Semester	30 Marks	
Practical	2 Hrs./Week	Practical	1	End-Semester	70 Marks	
				Oral	25 Marks	
Prerequisites:	Linear Algebra,	Probability, Sta	tistics, Logi	cal Reasoning.		
Course Object	ives:					
1. ACQUA	INT with fundation	amentals of artit	ficial intellig	ence and machine	earning.	
2. LEARN	feature extracti	on and selection	n techniques	for processing data	ı set.	
3. UNDER	RSTAND basic a	algorithms used	in classifica	tion and regression	problems.	
4. OUTLI	NE steps involv	ed in developm	ent of machi	ne learning model.		
5. FAMIL	IARIZE with c	oncepts of reinf	orced and de	ep learning.		
6. IMPLE	MENT AND	ANALYZE m	achine lear	ning model in me	chanical engineering	
problem	s.					
Course Outcor	nes:					
On completion	of the course, le	arner will be ab	le to			
CO1. DEM	ONSTRATE fu	ndamentals of a	rtificial inte	lligence and machin	ne learning.	
CO2. APPL	Y feature extrac	ction and selecti	on technique	es.		
CO3. APPL	Y machine lear	ning algorithms	for classific	ation and regression	n problems.	
CO4. DEVI	SE AND DEVH	ELOP a machin	e learning m	odel using various	steps.	
CO5. EXPL	AIN concepts of	of reinforced and	l deep learni	ng.		
CO6. SIMU	LATE machine	e learning model	l in mechani	cal engineering pro	blems.	
		Cour	se Contents			
Unit 1 In	troduction to A	I & ML			06 Hrs.	
History of AI,	Comparison o	f AI with Data	a Science, N	Need of AI in Me	chanical Engineering,	
Introduction to	Machine Learn	ing. Basics: Re	asoning, pro	blem solving, Knov	wledge representation,	
Planning, Learn	ning, Perception	, Motion and m	anipulation.			
Approaches to	AI: Cybernetic	s and brain sim	ulation, Sym	bolic, Sub-symboli	c, Statistical.	
Approaches to	ML: Supervise	ed learning, Uns	upervised le	arning, Reinforcem	ent learning.	
Unit 2 Fe	ature Extraction	on and Selectio	n		08 Hrs.	
Feature extrac	tion: Statistical	features, Princip	pal Compon	ent Analysis.		
Feature selecti	on: Ranking, D	Decision tree - I	Entropy redu	action and information	tion gain, Exhaustive,	
best first, Greed	dy forward & ba	ackward, Applie	cations of fe	ature extraction and	d selection algorithms	
in Mechanical Engineering.						
Unit 3 Cl	assification & 1	Regression			08 Hrs.	
Classification:	Decision tree, R	andom forest, N	Vaive Bayes	, Support vector ma	chine.	
Regression: Lo	Regression: Logistic Regression, Support Vector Regression. Regression trees: Decision tree,					
random forest,	K-Means, K-Ne	arest Neighbor	(KNN). App	plications of classif	ication and regression	
algorithms in Mechanical Engineering.						

Unit 4	Development of ML Model	07 Hrs.			
Problem id	entification: classification, clustering, regression, ranking. Steps in ML m	odeling, Data			
Collection,	Data pre-processing, Model Selection, Model training (Training, Testing,	K-fold Cross			
Validation)	, Model evaluation (understanding and interpretation of confusion matr	ix, Accuracy,			
Precision, F	Recall, True positive, false positive etc.), Hyper parameter Tuning, Predictio	ns.			
Unit 5	Reinforced and Deep Learning	08 Hrs.			
Characteri	stics of reinforced learning; Algorithms: Value Based, Policy Based, I	Model Based;			
Positive vs	Negative Reinforced Learning; Models: Markov Decision Process, Q Learn	ing.			
Characteris	tics of Deep Learning, Artificial Neural Network, Convolution Neural Netw	ork.			
Application	of Reinforced and Deep Learning in Mechanical Engineering.				
Unit 6	Applications	08 Hrs.			
Human Ma	chine Interaction, Predictive Maintenance and Health Management, Fa	ult Detection,			
Dynamic S	ystem Order Reduction, Image based part classification, Process Optimiza	tion, Material			
Inspection,	Tuning of control algorithms.				
	Books and other resources				
Text Books	•				
1. Deis	senroth, Faisal, Ong, Mathematics for Machine Learning, Cambridge Uni	versity Press,			
202	Э.				
2. B Jo	oshi, Machine Learning and Artificial Intelligence, Springer, 2020.				
3. Para	g Kulkarni and Prachi Joshi, "Artificial Intelligence – Building Intelligence	ent Systems",			
PHI	learning Pvt. Ltd., ISBN – 978-81-203-5046-5, 2015				
4. Stua	rt Russell and Peter Norvig (1995), "Artificial Intelligence: A Modern App	roach," Third			
edit	on, Pearson, 2003.				
References	Books:				
1. Sola Glo	unki, Kumar, Nayyar, Emerging Trends and Applications of Machine lubal, 2018.	Learning, IGI			
2. Mol	nri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press,	2018.			
3. Kun	nar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial	Engineering,			
CR	C Press, 2021.				
4. Zsol	t Nagy - Artificial Intelligence and Machine Learning Fundamentals-Apres	s (2018)			
5. Arti	ficial Intelligence by Elaine Rich, Kevin Knight and Nair, TMH				
Web Refer	ences:				
1. <u>http:/</u>	/nptel.ac.in/courses/111101003/				
2. <u>https:</u>	//nptel.ac.in/courses/106/106/106106202/				
3. https://nptel.ac.in/courses/112/103/112103280/					
4. <u>https:</u>	//www.analyticsvidhya.com/				

Term Work **List of Experiments:** 1. To study supervised/unsupervised/Reinforcement learning approach. 2. To acquire, visualize and analyze the data set (from time-domain/ frequency-domain/ etc.). 3. To extract features from given data set and establish training data. 4. To select relevant features using suitable technique. OR 5. To use PCA for dimensionality reduction. 6. To classify features/To develop classification model and evaluate its performance (any one classifier). 7. To develop regression model and evaluate its performance (any one algorithm). 8. Markov process for modelling manufacturing processes. OR 9. Reinforced Learning for optimizing engineering designs / Robot Guidance and Navigation. 10. GA for optimization of multi-dimensional function / path planning in robotics. OR 11. NN for parameter and model identification / tuning of Control Algorithms. Note:

- Students need to apply the computational algorithms using suitable software / programming language.
- Experiment 1, 2, 3, 6 & 7 are compulsory. Experiment 2 to 7 to be taken on same data set

302050: Computer Aided Engineering							
Teaching	Teaching Scheme		its	Examina	ation Scheme		
Theory	3Hrs./Week	Theory	3	In-Semester	30 Marks		
Practical	2 Hrs./Week	Practical	1	End-Semester	70 Marks		
				Practical	50 Marks		
Prerequisite	Courses: Solid	Mechanics,	Numerical	and Statistical N	Aethods, Engineering		
Mathematics, N	ianufacturing Pr	ocesses, Fluid I	viecnanics, F	Heat and Mass Tran	sier.		
1 UNDER	IVES: DSTAND the	hasia concente	of Com	nutor Aidad Eng	incoring (CAE) and		
	CTEDISTICS	of various alor	s of Collig	d for analysis	ineering (CAE) and		
2 NURTI	I RF students ab	out the discretiz	retion proces	a for analysis.	uality mesh		
2. NORIC	RE students ab	proaches of Fin	ite Flement	Method (FFM) and	d to find displacement		
and stres	sses over the bo	lv		Wiedhold (I Livi) and	d to find displacement		
4. DEVEL	OP the knowled	dge and skills n	needed to eff	fectively evaluate t	he results using Finite		
Element	Analysis (FEA)).					
5. APPLY	computational	echnique to sol	ve complex	solid mechanics pro	oblems and its loading		
states.	I	1	1	1	C		
6. STUDY	the applications	s of CAE in the	various dom	nains of the Mechar	ical Engineering.		
Course Outcor	nes:						
On completion	of the course, le	arner will be ab	le to				
CO1: DEFI	INE the use of	CAE tools and	DESCRIB	E the significance	of shape functions in		
finite	element formula	tions.					
CO2: APPI	\mathbf{Y} the various m	neshing techniqu	ues for better	r evaluation of appr	oximate results.		
CO3: APPI	LY material pro	operfies and bo	undary con	dition to SOLVE	1-D and 2-D element		
stiffne	ess matrices to ol	otain nodal or el	lemental sol	ution.	f 1		
CO4: ANAL	LYZE and APP	LY various num	nerical meth	ods for different ty	pes of analysis.		
	LUATE and So	JLVE non-nine	omputationa	linic analysis probl	ems by analyzing the		
CO6 [.] GEN	ERATE the result	ults in the form of	of contour n	lot by the USE of C	'AE tools		
		Cour	se Contents				
Unit I El	Computer Air	dad Engineerin	α (CAE)	Use of CAE in 1	U/ HIS.		
Discretization	methods – Finit	e Element Me	thod (FFM)	Finite Difference	Method (FDM) and		
Finite Volume	Method (FVM)	CAE Tools- Pre	e-processor	Solver and Post-Pr	ocessor		
Element Shape	s $-$ 1D. 2D an	d 3D elements	. Nodal Un	knowns and field	variables. Coordinate		
Systems, Shape	e Functions- li	near, quadratic	and cubic.	, Convergence Re	quirements of Shape		
Functions, Der	ivation of Poly	nomial Shape I	Functions us	sing coordinate sys	stems for Bar, Beam,		
Triangular, and	rectangular elen	nents.					

Unit 2Meshing Techniques06 Hrs.			
Discretization of a Structure, 1D, 2D and 3D element Meshing, Element selection criteria, Refining			
Mesh, Effect of mesh density in critical region, Use of Symmetry.			
Element Quality Criterion:-Jacobian, Aspect ratio, Warpage, Minimum and Maximum angles,			
Average element size, Minimum Length, skewness, Tetra Collapse etc., Higher Order Element vs			
Mesh Refinement, Geometry Associate Mesh, Mesh quality, Bolted and welded joints			
representation, Mesh independent test.			
Unit 31D Finite Element Analysis08 Hrs.			
Consistent Unit System, Introduction to approaches used in Finite Element Analysis (FEA) such as			
direct approach and energy approach			
Bar and Truss Element - Element stiffness matrix, Assembling stiffness Equation, Load vector,			
stress and reaction forces calculations.			
Temperature effect on Bar Element- Calculation due to uniform temperature change, Stress and			
reaction forces calculations.			
Unit 42D Finite Element Analysis08 Hrs.			
Plane Stress-Strain, axi-symmetric problems in 2D elasticity.			
Constant Strain Triangle (CST) - Element Stiffness matrix, Assembling stiffness equation, Load vector,			
Stress and reaction forces calculations.			
Post Processing Techniques - Check and validate accuracy of results, Average and Un-average			
stresses, and special tricks for Post Processing. Interpretation of results and design modifications, CAE			
reports.			
Unit 5Non-Linear and Dynamic Analysis08 Hrs.			
Non-Linear Analysis: Introduction to Nonlinear Problems, Comparison of Linear and Nonlinear			
analysis, Types of Nonlinearities, Stress-strain measures for Nonlinear analysis, Analysis of			
Geometric, Material Nonlinearity, Solution Techniques for Nonlinear analysis, Newton Raphson			
Method, Essential steps in Nonlinear analysis.			
Dynamic Analysis: Introduction to Dynamic Analysis, Comparison of Static and Dynamic analysis,			
Time domain and frequency domain, Types of loading, Simple Harmonic motion, Free vibration,			
Boundary conditions of free vibration, Solution.			
Unit 6Applications of Computer Aided Engineering08 Hrs.			
Computational Fluid Dynamics (CFD): Introduction, Three dimensions of Fluid Dynamics,			
Equilibrium Equation for a fluid, Conservation form of Fluid flow equation, Integral form of the			
Conservation Laws.			
Injection moulding of Plastics: Simplification of Mould Geometry for FEA, Material Model for			
Mould FEA, Boundary Conditions for Mould FEA, Loading of Mould in FEA, Results Analysis.			
Simulation for Manufacturing Processes like Casting and Sheet Metal Applications:			
Introduction and workflow of Casting Simulation Software and Sheet Metal Applications.			
Durability Analysis: Durability, Reliability and Fatigue, FEA bases fatigue analysis viz: Stress-Life			
approach (S-N method) and Strain-Life approach (E-N method).			
Crash Analysis: Introduction, Explicit time integration schemes, implicit integration schemes.			
Noise Vibration and Harshness (NVH) Analysis: NVH Concepts, Terminology, FEA for			
structural Dynamics, FEA for Acoustics.			

Books and other resources

Text Books:

- 1. Gokhale N. S., Deshpande S. S., Bedekar S. V. and Thite A. N., Practical Finite Element Analysis, Finite to Infinite, Pune, 1st Edition, 2008.
- 2. S. S. Bhavikatti, Finite Element Analysis, New Age International Publishers, Third Edition, 2015.
- 3. Chandrupatla T. R. and Belegunda A. D., Introduction to Finite Elements in Engineering, Prentice Hall India, 2002.
- 4. G Lakshmi Narasaiah, Finite Element Analysis, BS Publications / BSP Books, 2nd edition, 2020.
- 5. J. N. Reddy, An Introduction to the Finite Element Method, Mcgraw Hill Series in Mechanical, 2005.
- 6. P. Seshu, Text book of Finite Element Analysis, PHI Learning Private Limited, New Delhi, 10th Printing, 2012.

References Books:

- 1. K. J. Bathe, Finite Element Procedure, Prentice-Hall of India (P) Ltd., New Delhi, 1996.
- 2. Cook R. D., Finite Element Modeling for Stress Analysis, John Wiley and Sons Inc, 1995.
- 3. G.R. Liu S. S. Quek, The Finite Element Method- A Practical Course, Butterworth Heinemann, 2013.
- 4. Fagan M. J., Finite Element Analysis Theory and Practice, Harlow Pearson/Prentice Hall, 2012.
- 5. S. Moaveni, Finite element analysis, theory and application with Ansys, Pearson, Third Edition, 2011.
- 6. David V. Hutton, Fundamental of Finite Element Analysis, Tata McGraw-Hill, 2017.
- 7. Mukhopadhyay M and Sheikh A. H., Matrix and Finite Element Analyses of Structures, Ane Books Pvt. Ltd., 2009
- 8. Daryl L. Logan, A First Course in the Finite Element Method, Fourth Edition, Thomson Canada Limited, 2007.
- 9. O.C. Zienkiewicz, The Finite Element Method: Its Basis and Fundamentals, Sixth Edition, Elsevier Butterworth-Heinemann, 2005.

Web References:

- <u>https://nptel.ac.in/courses/112/104/112104116/-</u>for Basics of Finite Element Analysis by Prof.Nachiketa Tiwari, IIT Kanpur
- <u>https://nptel.ac.in/courses/112/106/112106130/</u>for Advanced Finite Element Analysis by Dr. R. Krishnakumar, Department of Mechanical Engineering, IIT Madras
- <u>https://nptel.ac.in/courses/112/103/112103299/</u>for Finite Element Analysis for Welding Analysis by Prof. Swarup Bag, Department of Mechanical Engineering, IIT Guwahati.
- https://sites.ualberta.ca/~wmoussa/AnsysTutorial/ for ANSYS Tutorials

Term Work

The student shall complete the following activity as a Practical using any commercial FEA software or open-source software's

- 1. 1D Bar Element Structural Linear Analysis
- 2. Truss Analysis using 1D Element
- 3. Plate/Shell Element Structural Linear and Non-Linear Analysis
- 4. Beam Element Non-Linear Buckling Analysis
- 5. Thermal Analysis Static/Transient Analysis
- 6. Coupled Analysis- (Structural + Thermal)
- 7. Analysis of Machine Component using 3D Elements
- 8. Non-Linear Analysis of Assembly using Contact Elements
- 9. Modal Analysis Spring -Mass system, simply supported/Cantilever beam, etc.
- 10. Presentation on advanced applications of FEA, NVH, CFD, Crash, Fatigue, Manufacturing, etc.

Note:

- The lab report shall consist of completion of Practical's and Presentations.
- Practical examination shall be based on the practical undertaken during the semester.

302051: Design of Transmission Systems						
Teaching	Scheme	Cred	its	Examina	ntion Scheme	
Theory	3Hrs./Week	Theory	3	In-Semester	30 Marks	
Practical	2 Hrs./Week	Practical	1	End-Semester	70 Marks	
				Oral	25 Marks	
Prerequisites:	Prerequisites: Classification of Gears, Gear Terminology, Terminology of Helical gear, Virtual					
number of teeth	. Classification,	selection and aj	pplication of	Belt, chain and rop	be drives.	
1 A DDI V	ives:	or the design on	d/or coloctio	n of alamanta in tra	nomission systems	
1. APPLY 2. UNDER	STAND the ph	of the design an	a/or selectio	ing design problem	institussion systems.	
2. UNDER	ring	mosopny mai n	ear engineer	ing design problem	is are open-ended and	
3 DEMO	,mg. NSTRATE desi	on skills for the	problems in	real life industrial	applications	
4. DEVEL	OP an attitude	e of team wor	k. critical	thinking. communi	cation. planning and	
scheduli	ng through desig	gn projects.	,	6,	, <u>r</u> . 8	
5. PERCE	IVE about safe	ty, ethical, lega	l, and other	societal constraints	s in execution of their	
design p	orojects.					
6. BUILD	a holistic desig	n approach to f	ind out prag	matic solutions to	realistic domestic and	
industria	al problems					
Course Outcor	nes:					
On completion	of the course, le	arner will be ab	le to	1		
COLAPPL DDED	Y the principle	e of Spur & I	Helical gear	r design for industry $c = \frac{1}{2} \int \frac{1}{2} dx$	strial application and	
CO2 EXPL	AIN and DESI	CN Revel & W	orm gear coil	repts of GD&1.	rameters as per design	
standa	rds.		onn gear coi	isidering design pa	rameters as per design	
CO3.SELE	CT&DESIGN	Rolling and Slic	ding Contact	Bearings from ma	nufacturer's catalogue	
for a ty	pical applicatio	n considering su	uitable desig	n parameters.		
CO4. DEFI	NE and DESIG	N various types	of Clutches,	Brakes, used in au	tomobile.	
CO5.APPL	Y various conce	pt to DESIGN	Machine To	ol Gear box, for dif	ferent applications	
CO6.ELAB	ORATE vario	us modes of o	peration, de	egree of hybridizat	tion and allied terms	
associa	ated with hybrid	electric vehicle	es.			
Course Contents						
Unit 1 Spur and Helical Gears 07 Hrs.						
Introduction to gears: Material selection for gears, Modes of gear tooth failure, Gear Lubrication						
Nethous.						
Velocity factor Service factor Load concentration factor Effective load on gear Wear strength						
(Buckingham's) equation Estimation of module based on beam and wear strength Estimation of						
dynamic tooth l	oad by velocity	factor and Buck	cingham's ec	uation.		
AGMA (Ameri	can Gear Manu	facturing Assoc	tiation) appr	oach of Gear desig	n (Only mathematical	
relations, no numerical)						

Helical Gears: Force analysis of Helical Gear, Beam Strength of Helical Gear, Wear strength and estimation of effective load based on Velocity factor (Barth factor) and Buckingham's equation. (No numerical on force analysis of helical)

Unit 2	Bevel and Worm Gear	08 Hrs.			
Bevel Gear	Bevel Gears: Types of Bevel gears, Terminology, Virtual number of teeth, and force analysis of				
Straight Bevel Gear. Design of Straight Bevel Gear based on Beam Strength, Wear strength and					
estimation of	of effective load based on Velocity factor (Barth factor) and Buckinghan	n's equation.			
(Simple nur	nerical to be taken no design calculations)				
Worm Gea	rs: Worm and worm gear terminology and proportions of worm and worm	gears, Force			
analysis of	worm gear drives, Friction in Worm gears, efficiency of worm gears, Wor	rm and worm			
gear materia	l, Strength and wear ratings of worm gears (Bending stress factor, speed f	actor, surface			
stress factor	, zone factor) IS 1443-1974, Thermal consideration in worm gear drive.				
(Simple num	nerical to be taken no design calculations)				
Unit 3	Sliding and Rolling Contact Bearing	07 Hrs.			
Sliding cor	ttact bearing (Theoretical treatment only): Introduction to sliding cor	itact bearing,			
classificatio	n, Reynolds's equation (2D), Petroff's equations, Sommerfeld number, I	Parameters of			
bearing desi	gn.				
Rolling Con	ntact Bearings: Types of rolling contact Bearings and its selection, Static	and dynamic			
load carryin	ng capacities, Stribeck's Equation, Equivalent bearing load, Load-life	relationship,			
Selection o	f bearing life, Selection of rolling contact bearings from manufactures	r's catalogue,			
Design for o	cyclic loads, Types of failure in rolling contact bearings - causes and reme	dies. (Simple			
Numerical t	reatment)				
Unit 4	Design of Clutches and Brakes	07 Hrs.			
Clutches: In	ntroduction, Types of clutches, Material, Positive clutches, friction clutches	, single plate,			
multiple pla	te, Cone clutch, and centrifugal clutches, Application of friction clutches au	tomotive and			
industrial m	achinery sector. (Only Theoretical Treatment)				
Brakes: Int	roduction, Types of brakes, Material, Design of band brake, external and	internal shoe			
breaks inter	nal expanding shoe brakes, design of disc brakes. Application of brakes i	n automotive			
and industri	al machinery sector. (Only Theoretical Treatment)				
Unit 5	Design of M/C Tool Gear Box	08 Hrs.			
Introduction	to Machine Tool Gearboxes, classification, basic considerations in design	of drives and			
its Applications, Determination of variable speed range, Graphical representation of speed and					
structure diagram, Ray diagram, selection of optimum ray diagram, Kinematic /Gearing Diagram,					
Deviation diagram, Difference between numbers of teeth of successive gears in a change gear box.					
(Note: Full design problem to be restricted up to 2 Stages only & amp; No design problem on					
deviation diagram)					
Unit 6	Transmission system in Hybrid Electric Vehicle	08 Hrs.			
Introduction	, Types of Hybrid Electric Vehicles: Basic Classification, Basic Modes	of Operation.			
Other Derivatives, Degree of Hybridization. Power Split Devices (PSD): Simple and EM compound					

PSD, HEV Component Characteristics: The IC Engine, Electric Machines, Battery, HEV Performance Analysis: Series HEV, Parallel HEV, HEV Component Sizing: General Considerations, Sizing for Performance, Optimum Sizing, Power Management: Control Potential, Control.

Books and other resources

Text Books:

- 1. Shigley J.E. and Mischke C.R., Mechanical Engineering Design, McGraw Hill Publication Co. ltd.
- 2. Spotts M.F. and Shoup T.E., Design of Machine Elements, Prentice Hall International.
- 3. Bhandari V.B, Design of Machine Elements, Tata McGraw Hill Publication Co. Ltd.
- 4. Juvinal R.C, Fundamentals of Machine Components Design, John Wiley and Sons.

References Books:

- 1. Design Data P.S.G. College of Technology, Coimbatore.
- 2. Vehicle Powertrain Systems by Behrooz Mashadi, David Crolla. A John Wiley & Sons, Ltd
- 3. Automobiles–Power trains and Automobiles–Dynamics by Crolla, David, A John Wiley &Sons, Ltd
- 4. Automotive Engineering Powertrain, Chassis System and Vehicle Body by David A Crolla, Elsevier B H New York, London, Oxford.
- 5. lack P.H. and O. Eugene Adams, Machine Design, McGraw Hill Book Co. Inc.
- 6. Willium C. Orthwein, Machine Components Design, West Publishing Co. and Jaico Publications House.
- 7. P. Kannaiah, Design of Transmission systems^I, SCIETCH Publications Pvt Ltd.
- 8. C.S. Sharma and Kamlesh Purohit, Design of Machine Elements, PHI Learning Pvt. Ltd.
- 9. D.K. Aggarwal& P.C. Sharma, Machine Design, S.K Kataria and Sons.
- 10. P. C. Gope, Machine Design: Fundamentals and Applications, PHI Learning Pvt. Ltd.
- 11. Bhandari, V. B. Machine Design data book, Tata McGraw Hill Publication Co. Ltd.
- 12. K. Mahadevan, K. Balveera Reddy, Design Data Handbook for Mechanical Engineers, CBS Publishers.

Web References:

- 1. <u>https://www.youtube.com/watch?v=b42_IO87X4s</u>
- 2. <u>https://www.youtube.com/watch?v=vTZ4Gah3wfo</u>
- 3. <u>https://www.youtube.com/watch?v=ER6LC7ONCD8</u>
- 4. <u>https://www.youtube.com/watch?v=nMsB6Soz4Hc</u>
- 5. https://www.youtube.com/watch?v=WOTDbCPukoM
- 6. https://www.youtube.com/watch?v=fMNQglkUfhs
- 7. https://freevideolectures.com/course/2363/design-of-machine-elements

Term Work

Student shall complete the following activity as a Term Work;

The Submission shall consist of completion of Two Design projects and study Assignments. Oral examination shall be based on the practical undertaken during the semester.

Design Project 1 (Any one)

- 1. Design of gearbox for wind mill application or sluice gate. (Use AGMA approach)
- 2. Design of gearbox for building Elevator. (Use AGMA approach)
- 3. Design of gearbox for Hoist. (Use AGMA approach)
- 4. Design of gearbox for Worm gear box for Sugar Industry. (Use AGMA approach)
- 5. Design of clutch system for automobile
- 6. Design of brake system for automobile

Design Project 2

Projects shall be in the form of design of mechanical systems on multi speed spindle gear box including design of belt and pulley, Prime mover selection etc.

The design project shall consist of two full imperial (A1) size sheets involving assembly drawing with a part list and overall dimensions and drawings of individual components.

Manufacturing tolerances, surface finish symbols and geometric tolerances should be specified for important surfaces. A design report giving all necessary calculations of the design of components and assembly should be submitted in a separate file. Design data book shall be used wherever necessary to achieve selection of standard components.

Assignment: Any Two (PPT Presentation and Report)

- 1. Application orientated Numerical on HEV
- 2. Lubricating oils: Properties, additives, selection of lubricating oils
- 3. Properties & selection of sliding bearing materials
- 4. Application of belt, rope and chain drives and its selection method for Industry
- 5. Transmission system of HEV

302052-A: Composite Materials						
Teaching	Scheme	Credi	its	Examination Scheme		
Theory	3Hrs./Week	Theory	3	In-Semester	30 Marks	
				End-Semester	70 Marks	
Prerequisites:]	Engineering Ma	terials, Metallur	gy, Manufao	cturing Process, Ba	sic Design aspects.	
Course Objecti 1. DESCR material: 2. COMPI	ives: IBE what are co s. REHEND the ch	omposite materi nallenges associ	als and their ated with Po	r differences with r	espect to conventional	
3. UNDER	STAND the rec	uirement of Me	etal Matrix C	Composites		
4. RECOG	SNIZE design a STAND the tes	nd properties as ting, inspection	and standar	posites d in Composites		
6. ORIEN	I to the specific	Application of	Composites			
Course Outcomes: On completion of the course, learner will be able to CO1. DEFINE & COMPARE composites with traditional materials. CO2. IDENTIFY & ESTIMATE different parameters of the Polymer Matrix Composite CO3. CATEGORISE and APPLY Metal Matrix Process from possessions landscape. CO4. DETERMINE volume/weight fraction and strength of Composites. CO5. SELECT appropriate testing and inspection method for composite materials. CO6. SELECT composites materials for various applications. Course Contents Unit 1 Introduction to Composites, Classification of Composites, Reinforcements and matrices, Types of reinforcements, Types of matrices, Types of composites, Natural Composites, Carbon Fiber composites, Properties of composites in comparison with standard materials. Advantages and Disadvantages. Natural Composites, Hybrid materials and their difference with Composite materials.						
Unit 2 Po	lymer Matrix (Composite	1		08 Hrs.	
Polymer resins – thermosetting resins, thermoplastic resins – reinforcement fibers – roving's – woven fabrics – non woven random mats – various types of fibers. PMC processes – hand layup processes – spray up processes – compression moulding – reinforced reaction injection moulding – resin transfer moulding – Pultrusion – Filament winding – Injection moulding. Fiber reinforced plastics (FRP), Glass Fiber Reinforced Plastics (GFRP). Laminated Composites.						
Unit 3 M	etal Matrix Co	mosite	(01111). Lu	innated composite	07 Hrs	
Characteristics – fibers. Effect metallurgy proc infiltration In-si	Unit 3Metal Matrix Composite07 Hrs.Characteristics and types of MMC, advantages and limitations of MMC, Reinforcements – particles – fibers. Effect of reinforcement – volume fraction – rule of mixtures. Processing of MMC – powder metallurgy process – diffusion bonding – stir casting – squeeze casting, a spray process, Liquid infiltration In-situ reactions-Interface-measurement of interface properties.					

Unit 4	Mechanics of Composite Materials	08 Hrs.				
Geometr	ical aspects - volume and weight fraction (Numerical). Large particle compo	osites and the				
rule of r	rule of mixtures for elastic constants, failure, fatigue, and long-term strength, methods of optimum					
design of materials and structures, Micromechanics of a Lamina, Unidirectional continuous fiber,						
disconti	uous fibers, short fiber systems, woven reinforcements -Mechani	cal Testing:				
Determi	nation of stiffness and strengths of unidirectional composites; tension, compre	ssion, flexure				
and shea	r (Numerical).					
Unit 5	Testing, Inspection & Standards in Composites	07 Hrs.				
Test En	rironments, Mechanical Test (Tensile, compression, shear & Fatigue) Bond S	Strength / Ply				
Adhesio	n ASTM F904, Testing Techniques for Composite Double Cantilever Bean	n, End Notch				
Flexure,	Inter laminar Share Strength, Materials Nondestructive Inspection (NDI) of	Composites,				
Thermog	raphic testing of composites. ASTM & ISO standards for composites materials	s.				
Unit 6	Application of Composite Materials	08 Hrs.				
Applicat	ions of Composites material for Aerospace and Transportation application, vi	iz LCA/LCH,				
Automo	oile Industry -lightweight, cost-effective, multi-material technology, comp	atibility with				
automati	on systems and rapid processing.					
Energy	Applications-Ecofriendly Prime movers, Infrastructure and Building Application	ations, Maine				
Applicat	ions- Boats and Ships, Ecofriendly storage Tanks Sports Industry-Protective E	quipment's.				
	Books and other resources					
Text Bo	nks:					
1. (hawla K.K., Composite materials Science and Engineering, Springer – Springer	er New York-				
2	016					
2. I	Daniel Gav- Composite Materials- Design and Applications, CRC Press, 2014					
3. A	utar Kaw- Mechanics of Composite Materials, Taylor and Francis, Second Ed	ition- 2006				
4. F	obert M Jones-Mechanics of Composite Material. CRC Press. 2018					
5 N	Iadhuiit Mukhopadhyay - Mechanics of Composite Materials and Structur	e University				
F	res. 2004					
6. S.C. Sharma -Composite Materials. Narosa Publishing House—2000						
Referen	ces Books:					
1. A	Bent Strong- Fundamentals of Composites Manufacturing-Materials,	Methods and				
F	applications, Society of Manufacturing Engineers, 2008					
2. 0	Clyne T.W. and Withers P.J-Introduction to Metal Matrix Composites	, Cambridge				
τ	University Press, 1995	, C				
3. A	garwal B. D. and Broutmen L. J-Analysis and performance of Fiber Compo	osites, Wiley				
F	ublications-Fourth Edition, 2017					
4. N	I. W. Hyer, Scott R. White- Stress Analysis of Fiber-reinforced Composite Ma	terials,				
Ι	DEStech Publications, Inc., 2009					
5. (Carl T. Herakovich- Mechanics of Fibrous Composites, Wiley Publicaions, 199	8				
6. E	rich Fitzer, Lalit M. Manocha - Carbon Reinforcements and Carbon /carbon	Composites,				
S	pringer-Verlag, 1998	÷ ,				
7. N	Iurray Schwartz, Mel M. Schwartz- Composite Materials Handbook, McGraw	-Hill, 1992				
8. C	Composite Materials Handbook, SAE International, 2017					

Web References:

- 1. Introduction of Composite https://nptel.ac.in/courses/112/104/112104229/
- 2. Advanced Composite https://nptel.ac.in/courses/112/104/112104249/
- 3. Polymer Process https://nptel.ac.in/courses/113/105/113105077/
- 4. Manufacturing of composite https://nptel.ac.in/courses/112/104/112104221/
- 5. Processing of Polymer composite https://nptel.ac.in/courses/112/107/112107221/
- 6. Composite materials https://nptel.ac.in/courses/101/106/101106038/
- 7. Mechanics of laminated of composite https://nptel.ac.in/courses/112/104/112104161/
- 8. Composite Materials and Structure https://nptel.ac.in/courses/101/104/101104010/

302052-B: Surface Engineering					
Teaching	Scheme	Cred	its	Examina	ation Scheme
Theory	3Hrs./Week	Theory	3	In-Semester	30 Marks
				End-Semester	70 Marks
Prerequisites:	Basic Chemistry	, Engineering N	Aaterials & H	Basic Metallurgy co	oncepts
Course Objectives: 1. DEVELOP fundamental understanding and role of materials to allow surface selection for					
mechani	cal contact surfa	nces			
2. UNDER	RSTAND surface	e modification a	and coating r	nethod to enhance	surface performance
3. RECOU	SNIZE method :	for testing surfa	ce properties	8	
On completion	nes: of the course, le	arner will be ab	le to-		
CO1. DEFI	NE the basic's p	rinciple & mec	hanism of su	rface degradation.	
CO2. ANAI	LYSE & SELE	CT correct corre	osion preven	tion techniques for	a different service
condit	ion.				
CO3. DEM	ONSTRATE th	e role of surface	e engineering	g of materials to mo	odify/improve the
surfac	e properties.				
CO4. SELE	CT the suitable	surface heat tre	atments to in	mprove the surface	properties.
CO5. APPL	Y the surface m	odification tech	nique to mo	dify surface proper	ties.
CO6. ANAI	LYSE & EV	VALUTE var	rious surfa	ce coating def	ects using various
testing	g/characterizatio	n method.			
		Cour	se Contents		
Unit 1 In	troduction to S	urface Enginee	ering and S	urface Degradatio	n 08 Hrs.
Introduction to	engineering cor	nponents, surfa	ce dependen	t properties and fai	ilures, importance and
scope of surfac	e engineering; s	urface and surf	ace energy;	Structure and type	of interfaces, surface
and related equa	ations; Surface e	ngineering: clas	ssification, d	efinition, scope and	d general principles.
Adhesive wear,	Abrasive wear,	Erosion wear, 1	Polishing we	ear; Corrosion: defi	nition; Various Forms
of Corrosion;	Corrosion Trian	gle, Pilling an	d Bedworth	rule, Formation	and growth of films,
Concept of Ele	ectrode Potentia	l, Concept of I	Polarization,	Electrochemical a	and galvanic series of
metals.					
Unit 2 Co	orrosion Testin	g and Preventio	on methods		07 Hrs.
Corrosion Tes	ting –Introducti	on of Corrosion	a Testing by	Physical (only we	Sight loss & salt spray
method) and Electrochemical Methods such as ASTM standard methods only G-5&A262-A.					
Corrosion Prevention methods – Metallurgical and Environmental aspects of corrosion, Inhibitors,					
design/ changes in design to control corrosion					
Unit 3 Surface Treatment Methods 09 Hrs					
Diffusion: Principles of diffusion Fick"s law diffusion in solids Diffusion in liquids: Surface					
hardening Carl	ourizing Carbur	izing atmospher	re and Heat f	treatment after Case	e Hardening Denth of
carburization. C	Case depth meas	urement, ASTN	A E1077-01	Depth of carburize	ation, ASTM standard

G105, G95, Bainite control in case, Drip Feed Carburizing, dimensional changes during case hardening; Nitriding, Carbonitriding, Tufftriding, Nitrocarburising, Plasma Nitriding; Induction Hardening, Flame Hardening, Laser Hardening, Selection of steels for these treatments and their applications.

applications	>				
Unit 4	Advance Surface Modification Techniques	07 Hrs.			
Surface mo	odification processes: ion beam surface treatment; sol-gel coating techn	nology; laser			
surface all	bying. Coating for corrosion resistance: conversion coatings; compoun	d coatings -			
diamond-lil	ke nanocomposites, nitrides, silicides, and carbides. Coating for wear resist	tance: carbon			
nitride thin	films; sputter deposited nanostructured ceramic coatings; dielectric coat	tings of Si-C			
alloy films.	Electroless coating.				
Unit 5	Surface Coating Techniques	07 Hrs.			
Introduction	n; importance of coating; types of coating: metal, inorganic, and organic.	Processes of			
metal coatin	ngs: electrodeposition; flame spraying; Cold spray coating; cladding; hot d	ipping; vapor			
deposition.	Processes of inorganic coatings: spraying; diffusion coating; chemical	conversion.			
Processes of	of organic coatings: surface preparation; priming coat; top coats, Anti	dust coating,			
Hardfacing	; Coatings for high temperature, Coatings for aerospace and aircrafts.				
Unit 6	Surface Evaluation and Characterizations	08 Hrs.			
Coating De	fects & remedies: Crawling, cratering & related defects; Flooding, wrinkli	ng, Bubbling			
and Pin-ho	ling, Overspray and Dry Spray, Blushing, foaming, blistering, checking a	and cracking,			
blooming, c	blooming, chalking, embrittlement, orange peel, yellowing etc.				
Measureme	nt of coating thickness; porosity and adhesion of surface coating; mea	asurement of			
residual str	ess and stability; Surface microscopy and topography by scanning probe	microscopy;			
spectroscop	spectroscopic analysis of modified surfaces; Surface roughness, Atomic force microscopy.				
	Books and other resources				
Text Books	3:				
1. K.G	Budinski, Surface Engineering for Wear Resistances, Prentice Hall, Engle	ewood Cliffs,			
198	8.				
2. M. C	Ohring, The Materials Science of Thin Films, Academic Press Inc, 2005.				
3. Pete	r Martin, " Introduction to Surface Engineering and Functionally Engineere	ed Materials",			
Johr	n Willey				
4. M. C	G. Fontana - Corrosion Engineering, 3 rd Edition, TATA Mc Graw Hill, 2008.				
5. J. R	. Davis-Surface Engineering for Corrosion and Wear Resistance, ASM	International,			
200	1				

6. R. W. Revie & H.H. Uhlig - Corrosion and Corrosion Control, An Introduction to Corrosion Science & Engineering, 4th Edition, Wiley Inter science , 2008.

References Books:

- 1. Mircea K. Bologa, "Surface Engineering and Applied Electrochemistry", Springer.
- 2. Devis, J.R.," Surface Engineering for Corrosion & Wear Resistance", 2001 Maney Publicsing
- 3. D.R. Jones Principals and Prevention of Corrosion, 2nd International Edition, Prentice Hall International Singapore, 1995.
- 4. L. L. Shreir- Corrosion Volume I & II, Butterworths, London, 1994.
- 5. ASM Handbook Volume 5: Surface Engineering, ASM International, USA, 1994.

Web References:

- 1. Aqueous Corrosion and Its Control Course (nptel.ac.in): By Dr. V. S. Raja
- 2. Corrosion Failures and Analysis Course (nptel.ac.in):By Dr. KallolMandol
- 3. Surface Engineering of Nanomaterials Course (nptel.ac.in): By Prof. Kaushik Pal
- 4. <u>Fundamentals of Surface Engineering: Mechanisms, Processes and Characterizations -</u> <u>Course (nptel.ac.in)</u>by Prof. D.K. Dwivedi

302053: Measurement Laboratory						
Teaching	Scheme	Cred	its	Examina	tion Scheme	
Practical	2 Hrs./Week	Practical	1	Term Work	50 Marks	
Prerequisites: devices.	Prerequisites: Basics of Linear measurements and working principles of Electrical and Electronics devices.					
Course Object	ives:					
1. DEVEL	OP necessary s	kills for calibrat	tion and testi	ing of instruments		
2. APPLY	fundamentals o	f measuring me	thods by col	lecting data ,analysi	is and interpretation	
3. APPLY	knowledge of I	Designing limiti	ng gauges			
4. APPLY	knowledge of E	Electronic/Elect	rical measuri	ing instruments		
Course Outcor	nes:		1 .			
On completion	of the course, le	arner will be ab	le to-			
COLEVAL	LUATE causes	of errors in Ver	nier calipers.	, micrometers by pe	erforming experiments	
in star	ndard metrologi	cal conditions,	noting devia	tions at actual and	by plotting cause and	
effect	diagram, to redu	ice uncertainty	in measurem	ient.		
CO2. ANAI	LYZE strain	measurement	parameters	by taking modul	lus of elasticity in	
CO2 EXA		Swiedge its usag	ge in failure (detection and force	variations.	
CUS. EAAP	o finish require	extures, surface	e finish ush	uinmont's like gou	Tarysull and analyze	
caline	rs micrometers	magnifying gl	asses of hei	abt gauge and more	e to optimize surface	
finish	accuracy require	ements and cost	of measure	gnt gauge and more	e, to optimize surface	
CO4 MEA	SURE the dime	ensional accura	cy using Co	mont.	gauges and appraise	
their u	usage in actual m	easurement or (comparison	with standards set to	reduce measurement	
lead ti	me		comparison	with standards set to	reduce measurement	
CO5. PERF	ORM Testing of	of Flow rate, spe	eed and temr	perature measureme	nts and their effect on	
perfor	mance in mach	ines and mech	nanisms like	hydraulic or pneu	umatic trainers. lathe	
machi	ne etc. to increa	se repeatability	and reprodu	cibility.	,	
CO6. COM	PILE the info	rmation of opt	ortunities of	of entrepreneurships	s/business in various	
sector	s of metrology	like calibration	is, testing, c	oordinate and laser	metrology etc in an	
industry visit report.						
Term Work						
The student sha	ll complete the f	following activi	ty as a Term	Work		
1. Fundamentals of measurements and Calibration process by using Dead weight Tester/Strain						
Gauges/Pressure Gauge.						
2. Linear a	and angular Me	asurement: Der	monstration	and calculations u	sing Vernier Caliper,	
Screw g	gauge, Dial gaug	ge, height gaug	e, Bevel pro	otector etc. and plot	tting cause and effect	
diagram for their errors in measurement with the help of OER software's or software's like						

Minitab or in excel sheet.

- 3. Limit Gauges: Concepts, uses and applications of Go –No Go Gauges, Taylor's principle and Design of gauges (Numerical and student activity)
- 4. Surface roughness measurement of a given sample using surface tester. Students should also

plot of flow chart of its usage.

- 5. Determination of geometry and dimensions of given composite object / single point tool, by using Optical Projector / Tool makers' Microscope and differentiate between its usefulness in real life.
- 6. Verification of dimensions and geometry of given components using Electric/Mechanical/Optical/Pneumatic comparator in context of manufacturing.
- 7. Determination of modulus of elasticity of a mild steel specimen using strain gauges and its improvement to reduce cost of measurement.
- 8. Calibration of Thermocouple for temperature measurement / Experimentation by using Gear Tooth Vernier Caliper
- 9. Speed Measurement and calibration of photo and magnetic speed pickups for the measurement of speed by using Stroboscope.
- 10. Calibration for Flowrate measurement by using Anemometers, Ultrasonic flow meters and plotting of Risk Priority Number (RPN) of any of the used equipments.
- 11. Determination of geometry of a given sample by using Coordinate Measuring Machine as per NPL standard and also acknowledge requirements of ISO 10360-5:2020 in CMM measurement.
- 12. Applications of Open Education Resources like Scilab in measurement / Students should develop any online calculator/app for calculations/numerical analysis relevant to metrology.

Important Note:

- 1. Relevant theory to be taught during practical hours
- 2. Sr. No. 1, 2, 3 and 12 are mandatory and any 4 from Sr. No. 4 to 11.
- 3. Practical's are to be performed under the guidance of concerned faculty member.

Industry Visit to provide exposure to students (Anyone to be covered to fulfil CO6 essentially)

- Demonstration of CMM with the help of software and its futuristic improvements as per Industry 4.0 requirements.
- Design of Go –No Go gauges and Senor applications with modernization as per IOT and Industry 4.0
- Calibration Process as per NABL accreditation norms
- Laser Metrology and its relevant setup functions to be carried out by engineers along with safety precautions to reduce measurement lead time and uncertainty.
- Temperature Measurements of Furnaces, Boilers etc with its cost analysis
- Flow Measurements of Air, Fluids to reduce measurement lead time

Text Books:

- 1. Jain R.K., Engineering Metrology, Khanna Publication.
- 2. D.S.Kumar, Mechanical Measurements and Control Metropolitan Book Co.Pvt.Ltd.
- 3. I.C.Gupta, Engineering Metrology, Dhanpath Rai.
- 4. Bewoor A. K. and Kulkarni V. A., Metrology and Measurements, McGraw hill Publication.

Reference Books:

- 1. Narayana K.L., Engineering Metrology.
- 2. Galyer J.F & Shotbolt C.R., Metrology for engineers
- 3. Judge A.W., Engineering Precision Measurements, Chapman and Hall
- 4. Francis T. Farago, Mark A. Curtis, Handbook of dimensional measurement

- 5. ASTME, Handbook of Industrial Metrology, Prentice Hall of India Ltd.
- 6. Connie Dotson, Fundamentals of Dimensional Metrology, ThamsonPubln. 4th Edition.

Online Education resources: viz. NPTEL web site:

- 1. nptel.ac.in/courses/112106179
- 2. www.nptelvideos.in/2012/12/mechanical-measurements-and-metrology.html
- 3. https://nptel.ac.in/courses/112/107/112107242/
- 4. freevideolectures.com > Mechanical > IIT Madras
- 5. https://nptel.ac.in/courses/112/106/112106139/

	302054: Fluid Power & Control Laboratory					
Teaching	Scheme	Credits Examination Scheme				
Practical	2 Hrs./Week	Practical	1	Term Work	50 Marks	
Prerequisites: H	Hydraulic fluids,	Relay logic and	Ladder Logi	c/PLC programmin	g	
 Course Objectives: UNDERSTAND working principles of control devices and accessories. SELECT different components from manufactures' catalogues. DEMONSTRATE the capabilities to simulate and design fluid power systems. UNDERTAKE digitalization of fluid power system. Course Outcomes: on completion of the course, learner will be able to CO1.DEFINE working principle of components used in hydraulic and pneumatic systems. CO2.IDENTIFY & EXPLAIN various applications of hydraulic and pneumatic systems. CO3.SELECT an appropriate component required for hydraulic and pneumatic systems using manufactures' catalogues. CO4.SIMULATE & ANALYSE various hydraulic and pneumatic systems for industrial/mobile applications. 						
The starlast shall	eumatics.	P	ractical			
1.Study of :a.Fluid•Fli•Di•Aa•Ex•Clb.Comp•Ca• </td <th>fluid power cont fluid power cont Power Engineer uid power basics iscuss fluid power dvantages and di cplain role of flui arify the aims of ponents of Fluid omponents of phy omponents of phy omponents of phy components of phy actuators of actuators of actuators used oduction bes of actuators inear actuators inear actuators imited rotary actu- on linear /rotary actu-</th> <th>rol systems ring Fundamenta (governing law er transmission a sadvantages of f id power engined automation Power System draulic systems eumatic systems hydraulic and phores l in hydraulics an uators actuator. Calcula</th> <th>al in laborato ils s used in flui nd explain b luid power s ering in today eumatic com nd pneumatic</th> <th>d power systems) asic methods of tran ystems y's industrial autom ponents cs</th> <th>nsmission of power ation</th>	fluid power cont fluid power cont Power Engineer uid power basics iscuss fluid power dvantages and di cplain role of flui arify the aims of ponents of Fluid omponents of phy omponents of phy omponents of phy components of phy actuators of actuators of actuators used oduction bes of actuators inear actuators inear actuators imited rotary actu- on linear /rotary actu-	rol systems ring Fundamenta (governing law er transmission a sadvantages of f id power engined automation Power System draulic systems eumatic systems hydraulic and phores l in hydraulics an uators actuator. Calcula	al in laborato ils s used in flui nd explain b luid power s ering in today eumatic com nd pneumatic	d power systems) asic methods of tran ystems y's industrial autom ponents cs	nsmission of power ation	

- 3. A) Study and trial on Gear/Vane/Piston pump
 - a. Study of hydraulic pumps.
 - Introduction and classification
 - Advantages of positive displacement pumps
 - Types of pumps
 - External and internal gear pump
 - Vane pumps
 - Piston pumps
 - Axial pumps
 - Radial piston pumps
 - b. Trial Gear/Vane/Piston pump.

OR

- B) Study and testing of pressure control valve.
- a. Circuits with pressure control valve i.e. pressure reducing/counterbalance/brake valve/Sequencing circuit
- b. Test on pressure relief valve
- 4. Study and design of compressed air generation and distribution system
 - a. Reservoir
 - b. Driers
 - c. Types of Regulators
 - d. Filters
 - e. Lubricators
 - f. FRL
 - g. Loop piping system
 - h. Assignment on calculation (manual/excel sheet/simulation tool) of pressure loss in piping system
- 5. Study of control valves
 - a. Introduction
 - b. Types of control valves
 - Directional control valves
 - Pressure control valves
 - Flow control valves
 - Cartridge valves
 - Proportional control valves/Electro-hydraulics/proportional valves
 - Demonstration of cut-section/transparent/dismantling of any one valve
 - c. Regenerative circuit
 - d. Speed control circuits
 - e. Transverse and feed circuit.
- 6. Study of accessory used in hydraulic systems
 - a. Reservoirs
 - b. Accumulators: weight loaded, spring loaded, gas loaded.
 - c. Intensifier

7.

- d. Fluid conductors/pipes; pipe fittings
- e. Demonstration of electro hydraulic circuit/accumulator/intensifier
- Following experiments to be done on pneumatic trainer
 - a. Automatic reciprocating circuit
 - b. Speed control circuit/Flow control valve
 - c. Pneumatic circuit involving Shuttle valve/ Quick exhaust valve / Two pressure valve
 - d. Electro pneumatic circuits

8. a) Simulation of hydraulic and pneumatic circuits: Design of any two industrial hydraulics and two pneumatic circuits using manufacturers' catalogue and analysis using any open source/free/commercial software or application.

OR

b) Design of industrial hydraulic and pneumatic circuits, selection of components using the manufacturer's catalogue and analysis using any open source/free/commercial software or application.

- 9. A) Industrial visit. (Automotive workshop, small or medium scale /automation industry)B) Trouble shooting of fluid power system.
- 10. Study and implementation of IoT based system to operate electro-pneumatic/hydraulic circuit from a remote location.

i.e. Demonstration of one cycle of operation of cylinder extension by actuation of solenoid and then retraction by deactivation of the solenoid through proximity sensor.

OR

Demonstration of counting and stopping a cycle once the number of the cycle's are completed (using PLC)

OR

any other application of relay ladder logic or PLC. (Equipments required for implementation include Smart Phone, Node MCU, Relay 5 volt to 24 volt and account on cloud.)

Assessment of Term Work

The student shall complete the above mentioned activities and prepare a Term Work Journal; **Important Note**:

Term Work of the Student shall be evaluated based on the completion of Practical, Industrial Visit Report and Group Assignment. Continuous evaluation by the faculty shall be done for the award of the Credit associated with the course.

No practical examination shall be conducted for the award of the credit Books and other resources

Text Books:

- 1. Esposito A, Fluid Power with application, Prentice Hall
- 2. Majumdar S.R, Oil Hydraulic system- Principle and maintenance ,Tata McGraw Hill
- 3. Majumdar S.R, Pneumatics Systems Principles and Maintenance, Tata McGraw Hill
- 4. Stewart H. L, Hydraulics and Pneumatics, Taraporewala Publication

References Books:

- 1. Pipenger J.J, Industrial Hydraulics, McGraw Hill
- 2. Pinches, Industrial Fluid Power, Prentice Hall
- 3. Andrew A. Parr, Hydraulics and Pneumatics, Elsevier Science and Technology Books
- 4. ISO 1219, Fluid Systems and components, Graphic Symbols
- 5. Standard manufacturing catalogues
- 6. Fundamentals of Pneumatics, Vol I, II and III. FESTO
- 7. Fundamentals of fluid power control, John Watton Cambridge University press 2012
- 8. Introduction to Fluid power, Thomson Prentcie Hall 2004
- 9. Hydraulic Control Systems Herbert E. Merritt John Wiley and Sons, Inc

Web References:

URL links:

1. <u>https://nptel.ac.in/courses/112/106/112106175/</u>

2. <u>http://ndl.iitkgp.ac.in/document/QXBqK1czOUpyM3FlamVjTmREMWFEUFdEb25sZ01FZVRtZ</u> mhWNXlobUZ0MFJ0Zk1kU1dSYmEwK1RSZG1FMUNDNQ

Fluid Power Control: Web-Course Module-01 Module-02 Module-03 Module-04

Links of Video Lectures:

- 1. <u>https://nptel.ac.in/courses/112/106/112106300/</u>
- 2. https://www.digimat.in/nptel/courses/video/112105047/L01.html

Recommended on line courses: <u>https://nptel.ac.in/course.html</u>

302055: Internship/Mini project						
Teaching S	Scheme**	Credits	Examination Scheme			
		04	TW	100 Marks		
Prerequisites:	Knowledge of d	esign, manufacturing proces	ses, modeling, and	mechanical systems		
Course Objecti	ves:					
Internship prov learned in class much more prof 1. To enco experien 2. To learn 3. To get fa	ides an excelle ses and deploye ressional experie urage and prov ce through inter and understand amiliar with vari	nt opportunity to learner t ed into the practical world. ence as value addition to clas- ride opportunities for stude rnships. real life/industrial situations toous tools and technologies to	o see understand Industry/on proje ssroom teaching. nts to get professi s. used in industries a	the conceptual aspects act experience provides ional/personal nd their applications.		
4. To nurtu 5. To creat environr	re professional e awareness of nent of industry	and societal ethics. social, economic and admi organizations.	inistrative consider	rations in the working		
Course Outcon	nes:					
CO1. DEMO CO2. APPL profess CO3. CHOO CO4. DEMO to day CO5. DEVE people CO6. ANAI	 On completion of the course, learners should be able to CO1. DEMONSTRATE professional competence through industry internship. CO2. APPLY knowledge gained through internships to complete academic activities in a professional manner. CO3. CHOOSE appropriate technology and tools to solve given problem. CO4. DEMONSTRATE abilities of a responsible professional and use ethical practices in day to day life. CO5. DEVELOP network and social circle, and DEVELOPING relationships with industry people. CO6. ANALYZE various career opportunities and DECIDE career goals. 					
Translation		· · · · · · · · · · · · · · · · · · ·				
Internships are educational and career development opportunities, providing practical experience in a field or discipline. Internships are far more important as the employers are looking for employees who are properly skilled and having awareness about industry environment, practices and culture. Internship is structured, short-term, supervised training often focused around particular tasks or projects with defined time scales.						
Core objective simulated/exper and to understan environment of Engineering into knowledge from proposed to gi Engineering cur	is to expose to ienced in the cl nd the social, ec industrial organ ernships are into academics to ve academic co riculum.	echnical students to the in assroom and hence creating onomic and administrative of izations. ended to provide students the realities of the field wo redit for the internship un	dustrial environm competent profest considerations that with an opportunit rk/training. The found and ergone as a part	ent, which cannot be sionals in the industry influence the working y to apply conceptual llowing guidelines are rt of the Third Year		

Duration:

Internship is to be completed after semester 5 and before commencement of semester 6 of at least 4 to 6 weeks; and it is to be assessed and evaluated in semester 6.

Internship work Identification:

Student may choose to undergo Internship at Industry/Govt. Organizations/NGO/MSME/Rural Internship/ Innovation/IPR/Entrepreneurship. Student may choose either to work on innovation or entrepreneurial activities resulting in start-up or undergo internship with industry/NGO's/Government organizations/Micro/Small/ Medium enterprises to make themselves ready for the industry.

Students must get Internship proposals sanctioned from college authority well in advance. Internship work identification process should be initiated in the Vth semester in coordination with training and placement cell/ industry institute cell/ internship cell. This will help students to start their internship work on time. Also, it will allow students to work in vacation period after their Vth semester examination and before academic schedule of semester VI.

Student can take internship work in the form of the following but not limited to:

- 1. Working for consultancy/ research project,
- 2. Contribution in Incubation/ Innovation/ Entrepreneurship Cell/ Institutional Innovation Council/ startups cells of institute /
- 3. Learning at Departmental Lab/Tinkering Lab/ Institutional workshop,
- 4. Development of new product/ Business Plan/ registration of start-up,
- 5. Industry / Government Organization Internship,
- 6. Internship through Internshala,
- 7. In-house product development, intercollegiate, inter department research internship under research lab/group, micro/small/medium enterprise/online internship,
- 8. Research internship under professors, IISC, IIT's, Research organizations,
- 9. NGOs or Social Internships, rural internship,
- 10. Participate in open source development.

Internship Diary/ Internship Workbook:

Students must maintain Internship Diary/ Internship Workbook. The main purpose of maintaining diary/workbook is to cultivate the habit of documenting. The students should record in the daily training diary the day-to-day account of the observations, impressions, information gathered and suggestions given, if any. The training diary/workbook should be signed every day by the supervisor.

Internship Diary/workbook and Internship Report should be submitted by the students along with attendance record and an evaluation sheet duly signed and stamped by the industry to the Institute immediately after the completion of the training.

Internship Work Evaluation:

Every student is required to prepare and maintain documentary proofs of the activities done by him as internship diary or as workbook. The evaluation of these activities will be done by Program Head/Cell In-charge/ Project Head/ faculty mentor or Industry Supervisor based on- Overall compilation of internship activities, sub-activities, the level of achievement expected, evidence needed to assign the points and the duration for certain activities.

Assessment and Evaluation is to be done in consultation with internship supervisor (Internal and External – a supervisor from place of internship.

Recommended evaluation parameters-Post Internship Internal Evaluation -50 Marks + Internship Diary/Workbook and Internship Report - 50 Marks

Evaluation through Seminar Presentation/Viva-Voce at the Institute

The student will give a seminar based on his training report, before an expert committee constituted by the concerned department as per norms of the institute. The evaluation will be based on the following criteria:

- Depth of knowledge and skills
- Communication & Presentation Skills
- Team Work and Creativity
- Planning & Organizational skills
- Adaptability
- Analytical Skills
- Attitude & Behavior at work
- Societal Understanding
- Ethics
- Regularity and punctuality
- Attendance record
- Diary/Workbook
- Student's Feedback from External Internship Supervisor

After completion of Internship, the student should prepare a comprehensive report to indicate what he has observed and learnt in the training period.

Internship Diary/workbook may be evaluated on the basis of the following criteria:

- Proper and timely documented entries
- Adequacy & quality of information recorded
- Data recorded
- Thought process and recording techniques used
- Organization of the information

The report shall be presented covering following recommended fields but limited to,

- Title/Cover Page
- Internship completion certificate
- Internship Place Details- Company background-organization and activities/Scope and object of the study / Supervisor details
- Index/Table of Contents
- Introduction
- Title/Problem statement/objectives
- Motivation/Scope and rationale of the study
- Methodological details
- Results / Analysis /inferences and conclusion
- Suggestions / Recommendations for improvement to industry, if any
- Attendance Record
- Acknowledgement
- List of reference (Library books, magazines and other sources)

Feedback from internship supervisor(External and Internal)

Post internship, faculty coordinator should collect feedback about student with recommended parameters include as- Technical knowledge, Discipline, Punctuality, Commitment, Willingness to do the work, Communication skill, individual work, Team work, Leadership... **Reference:**

Reference:

- 1. https://www.aicte-india.org/sites/default/files/AICTE%20Internship%20Policy.pdf
- 2. https://internship.aicte-india.org/

IMPORTANT NOTE:

The student shall be encouraged to undertake the industrial internships however the Industry may provide opportunity to a limited few amongst the students available. In such scenario it becomes the moral responsibility of the faculty to create opportunity for such group of students (similar to the ones in Industry) by assigning them some real life problem as a part of the mini project and encouraging/mentoring them to attempt viable solutions. Hence the provision of Mini project is being done to accommodate such students and expose them with the Industrial practices in house. The students can be encouraged to consider analysis of the global patents available as a mini project,

Mini project

Teaching	Scheme	Credits		Examination Scheme	
Practical	4 Hrs./Week	Practical	4	Term work	100

Course Objectives:

Students shall UNDERTAKE and EXECUTE a Mini Project through a group of students to

- 1. UNDERSTAND the "Product Development Cycle", through Mini Project.
- 2. PLAN for various activities of the project and distribute the work amongst team members.
- 3. LEARN budget planning for the project.
- 4. **INCULCATE** mechanical/interdisciplinary implementation skills.
- 5. **DEVELOP** students' abilities to transmit technical information clearly and test the same by delivery of Seminar based on the Mini Project.
- 6. **UNDERSTAND** the importance of document design by compiling Technical Report on the Mini Project work carried out.

Course Outcomes:

On completion of the course, learner will be able to

CO1. EXPLAIN plan and execute a Mini Project with team.

CO2. IMPLEMENT hardware/software/analytical/numerical techniques, etc.

CO3. **DEVELOP** a technical report based on the Mini project.

CO4. **DELIVER** technical seminar based on the Mini Project work carried out.

Course Contents

Maximum Group Size: Minimum 2 and maximum 4 students can form a group for the mini project.

Project Type: (The selected mini project must be based on any of the following)

- 1. Development of a prototype mechanical system/product.
- 2. Investigate performance of mechanical systems using experimental method

- 3. Parametric analysis of components/systems/devices using suitable software
- 4. Investigation of optimum process/material for product development using market survey.
- **5.** Solution for society/industry problems

The Assessment Scheme will be:

- a. Continuous Assessment 50 marks (based on regular interaction, circuit development)
- b. End Semester 50 marks (based on poster presentation, demonstration / Seminar)

Project domain may be from the following, but not limited to:

- 1.Thermal Systems
- 2. Robotics Mechanisms/design systems
- 3. Production/advance manufacturing
- 4. Materials: Composite/Nano
- 5. Automation and Control Systems
- 6. Mechatronic Systems
- 7. Agriculture system.
- 8. Smart systems using AI-ML

A project report with following contents shall be prepared:

- 1. Title
- 2. Objectives
- 3. Relevance and significance
- 4. Methodology
- 5. Analysis-Simulation/experimentation/survey/testing etc.
- 6. Result and Discussion
- 7. Conclusion

302056: Audit Course VI					
Teaching Scheme	Credits	Examination Scheme			
	Non-Credit				
CUIDELINES FOR CONDUCTION OF AUDIT COURSE					

GUIDELINES FOR CONDUCTION OF AUDIT COURSE

Faculty mentor shall be allotted for individual courses and he/she shall monitor the progress for successful accomplishment of the course. Such monitoring is necessary for ensuring that the concept of self-learning is being pursued by the students 'in true letter and spirit'.

- If any course through Swayam/ NPTEL/ virtual platform is selected the minimum duration shall be of 8 weeks.
- However if any of the course duration is less than the desired (8 weeks) the mentor shall ensure that other activities in form of assignments, quizzes, group discussion etc. (allied with the course) for the balance duration should be undertaken.

In addition to credits courses, it is mandatory that there should be an audit course (non-credit course) from third year of Engineering. The student will be awarded grade as AP on successful completion of the audit course. The student may opt for any one of the audit courses in each semester. Such audit courses can help the student to get awareness of different issues which make an impact on human lives and enhance their skill sets to improve their employability. List of audit courses from the list of courses mentioned. Evaluation of the audit course will be done at institute level.

The student registered for audit course shall be awarded the grade AP and shall be included such grade in the Semester grade report for that course, provided student has the minimum attendance as prescribed by the Savitribai Phule Pune University and satisfactory in-semester performance and secured a passing grade in that audit course. No grade points are associated with this 'AP' grade and performance in these courses is not considered in the calculation of the performance indices SGPA and CGPA. Evaluation of the audit course will be done at institute level itself.

Selecting an Audit Course

List of Courses to be opted (Any one) under Audit Course VI

- Business and Sustainable Development
- Management Information System
- International Business

The titles indicated above are subject to change in time to come and such an alteration (if any) should be brought to the notice of the BOS.

Using NPTEL Platform: (preferable)

NPTEL is an initiative by MHRD to enhance learning effectiveness in the field of technical education by developing curriculum based video courses and web based e-courses. The details of NPTEL courses are available on its official website www.nptel.ac.in

- Students can select any one of the courses mentioned above and has to register for the corresponding online course available on the NPTEL platform as an Audit course.
- Once the course is completed the student can appear for the examination as per the guidelines on the NPTEL portal.
- After clearing the examination successfully; student will be awarded with a certificate.

Assessment of an Audit Course

- The assessment of the course will be done at the institute level. The institute has to maintain the record of the various audit courses opted by the students. The audit course opted by the students could be interdisciplinary.
- During the course students will be submitting the online assignments. A copy of the same can be submitted as a part of term work for the corresponding Audit course.
- On the satisfactory submission of assignments, the institute can mark as "Present" and the student will be awarded the grade AP on the mark-sheet.